{"title":"微型堆积床反应器中气液两相流的液体截留量","authors":"Keyi Chen, Yangcheng Lu","doi":"10.1002/aic.18636","DOIUrl":null,"url":null,"abstract":"Liquid holdup is a crucial factor in the study of hydrodynamic behaviors in the micro-packed bed reactor (μPBR). In this work, the values of liquid holdup are studied with the weighing method with good accuracy. The packed bed is a tube made of stainless steel with a length of 20 cm and an inner diameter of 4 mm, packed with 177–250 μm or 350–500 μm microbeads. The gas and liquid flow rates vary from 5 to 20 mL/min and 0.25 to 2 mL/min, respectively. A new hypothesis of the flow regions is proposed based on the experimental results. Furthermore, a new set of empirical correlation is built with great agreement, particularly for viscous liquids, whose viscosity ranges from 0.99 to 5.98 mPa·s, showing an atypical tendency.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"13 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid holdup of gas–liquid two-phase flow in micro-packed beds reactors\",\"authors\":\"Keyi Chen, Yangcheng Lu\",\"doi\":\"10.1002/aic.18636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid holdup is a crucial factor in the study of hydrodynamic behaviors in the micro-packed bed reactor (μPBR). In this work, the values of liquid holdup are studied with the weighing method with good accuracy. The packed bed is a tube made of stainless steel with a length of 20 cm and an inner diameter of 4 mm, packed with 177–250 μm or 350–500 μm microbeads. The gas and liquid flow rates vary from 5 to 20 mL/min and 0.25 to 2 mL/min, respectively. A new hypothesis of the flow regions is proposed based on the experimental results. Furthermore, a new set of empirical correlation is built with great agreement, particularly for viscous liquids, whose viscosity ranges from 0.99 to 5.98 mPa·s, showing an atypical tendency.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18636\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18636","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Liquid holdup of gas–liquid two-phase flow in micro-packed beds reactors
Liquid holdup is a crucial factor in the study of hydrodynamic behaviors in the micro-packed bed reactor (μPBR). In this work, the values of liquid holdup are studied with the weighing method with good accuracy. The packed bed is a tube made of stainless steel with a length of 20 cm and an inner diameter of 4 mm, packed with 177–250 μm or 350–500 μm microbeads. The gas and liquid flow rates vary from 5 to 20 mL/min and 0.25 to 2 mL/min, respectively. A new hypothesis of the flow regions is proposed based on the experimental results. Furthermore, a new set of empirical correlation is built with great agreement, particularly for viscous liquids, whose viscosity ranges from 0.99 to 5.98 mPa·s, showing an atypical tendency.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.