CHO 细胞基因组规模建模揭示了天冬酰胺在细胞培养基中的关键作用。

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Biotechnology Journal Pub Date : 2024-11-08 DOI:10.1002/biot.202400072
Kuin Tian Pang, Yi Fan Hong, Fumi Shozui, Shunpei Furomitsu, Matthew Myint, Ying Swan Ho, Yaron R. Silberberg, Ian Walsh, Meiyappan Lakshmanan
{"title":"CHO 细胞基因组规模建模揭示了天冬酰胺在细胞培养基中的关键作用。","authors":"Kuin Tian Pang,&nbsp;Yi Fan Hong,&nbsp;Fumi Shozui,&nbsp;Shunpei Furomitsu,&nbsp;Matthew Myint,&nbsp;Ying Swan Ho,&nbsp;Yaron R. Silberberg,&nbsp;Ian Walsh,&nbsp;Meiyappan Lakshmanan","doi":"10.1002/biot.202400072","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Amino acids, including asparagine, aspartate, glutamine, and glutamate, play important roles in purine and pyrimidine biosynthesis as well as serve as anaplerotic sources fueling the tricarboxylic acid (TCA) cycle for mitochondrial energy generation. Despite extensive studies on glutamine and glutamate in CHO cell cultures, the roles of asparagine and aspartate, especially in feed media, remain underexplored. In this study, we utilized a CHO genome scale model to first deeply characterize the intracellular metabolic states of CHO cells cultured in different combinations of basal and feed media to understand the traits of asparagine/aspartate-dependent and glutamate-dependent feeds. Subsequently, we identified the critical role of asparagine and aspartate in the feed media as anaplerotic sources and conducted in silico simulations to ascertain their optimal ratios to improve cell culture performance. Finally, based on the model simulations, we reformulated the feed media by tailoring the concentrations of asparagine and aspartate. Our experimental data reveal a CHO cell preference for asparagine compared with aspartate, and thus maintaining an optimal ratio of these amino acids is a key factor for achieving optimal CHO cell culture performance in biopharmaceutical production.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Scale Modeling of CHO Cells Unravel the Critical Role of Asparagine in Cell Culture Feed Media\",\"authors\":\"Kuin Tian Pang,&nbsp;Yi Fan Hong,&nbsp;Fumi Shozui,&nbsp;Shunpei Furomitsu,&nbsp;Matthew Myint,&nbsp;Ying Swan Ho,&nbsp;Yaron R. Silberberg,&nbsp;Ian Walsh,&nbsp;Meiyappan Lakshmanan\",\"doi\":\"10.1002/biot.202400072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Amino acids, including asparagine, aspartate, glutamine, and glutamate, play important roles in purine and pyrimidine biosynthesis as well as serve as anaplerotic sources fueling the tricarboxylic acid (TCA) cycle for mitochondrial energy generation. Despite extensive studies on glutamine and glutamate in CHO cell cultures, the roles of asparagine and aspartate, especially in feed media, remain underexplored. In this study, we utilized a CHO genome scale model to first deeply characterize the intracellular metabolic states of CHO cells cultured in different combinations of basal and feed media to understand the traits of asparagine/aspartate-dependent and glutamate-dependent feeds. Subsequently, we identified the critical role of asparagine and aspartate in the feed media as anaplerotic sources and conducted in silico simulations to ascertain their optimal ratios to improve cell culture performance. Finally, based on the model simulations, we reformulated the feed media by tailoring the concentrations of asparagine and aspartate. Our experimental data reveal a CHO cell preference for asparagine compared with aspartate, and thus maintaining an optimal ratio of these amino acids is a key factor for achieving optimal CHO cell culture performance in biopharmaceutical production.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400072\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400072","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

氨基酸(包括天门冬酰胺、天门冬氨酸、谷氨酰胺和谷氨酸)在嘌呤和嘧啶的生物合成中发挥着重要作用,同时也是线粒体能量生成的三羧酸(TCA)循环的无机源。尽管对谷氨酰胺和谷氨酸在 CHO 细胞培养物中的作用进行了广泛研究,但天冬酰胺和天冬氨酸的作用,尤其是在饲料培养基中的作用,仍未得到充分探索。在本研究中,我们利用 CHO 基因组规模模型,首先深入分析了在不同基础培养基和饲料培养基组合中培养的 CHO 细胞的细胞内代谢状态,以了解天冬酰胺/天冬氨酸依赖型饲料和谷氨酸依赖型饲料的特性。随后,我们确定了天门冬酰胺和天门冬氨酸在饲料培养基中作为无性源的关键作用,并进行了硅模拟,以确定它们的最佳比例,从而提高细胞培养性能。最后,根据模型模拟结果,我们调整了天门冬酰胺和天门冬氨酸的浓度,重新配置了培养基。我们的实验数据显示,与天门冬氨酸相比,CHO 细胞更偏爱天门冬氨酸,因此保持这些氨基酸的最佳比例是在生物制药生产中实现最佳 CHO 细胞培养性能的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-Scale Modeling of CHO Cells Unravel the Critical Role of Asparagine in Cell Culture Feed Media

Amino acids, including asparagine, aspartate, glutamine, and glutamate, play important roles in purine and pyrimidine biosynthesis as well as serve as anaplerotic sources fueling the tricarboxylic acid (TCA) cycle for mitochondrial energy generation. Despite extensive studies on glutamine and glutamate in CHO cell cultures, the roles of asparagine and aspartate, especially in feed media, remain underexplored. In this study, we utilized a CHO genome scale model to first deeply characterize the intracellular metabolic states of CHO cells cultured in different combinations of basal and feed media to understand the traits of asparagine/aspartate-dependent and glutamate-dependent feeds. Subsequently, we identified the critical role of asparagine and aspartate in the feed media as anaplerotic sources and conducted in silico simulations to ascertain their optimal ratios to improve cell culture performance. Finally, based on the model simulations, we reformulated the feed media by tailoring the concentrations of asparagine and aspartate. Our experimental data reveal a CHO cell preference for asparagine compared with aspartate, and thus maintaining an optimal ratio of these amino acids is a key factor for achieving optimal CHO cell culture performance in biopharmaceutical production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
期刊最新文献
Construction of a Cell Factory for the Targeted and Efficient Production of Phytosterol to Boldenone in Mycobacterium neoaurum L-Asparaginase from Lachancea Thermotolerans: Effect of Lys99Ala on Enzyme Performance and in vitro Antileukemic Efficacy Multifunctional PAMAM Dendrimers Carrying SAHA, 5-FU, and a Therapeutic Gene for Targeted Co-Delivery Toward Colorectal Cancer Cells An Experimental and Modeling Approach to Study Tangential Flow Filtration Performance for mRNA Drug Substance Purification Engineering Regioselectivity of P450 BM3 Enables the Biosynthesis of Murideoxycholic Acid by 6β-Hydroxylation of Lithocholic Acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1