{"title":"利用超音速喷射光谱探测芳香性:呋喃、噻吩和硒吩案例研究。","authors":"Akshay Kumar Sahu, Anant Ram Satpathi, Saiprakash Rout, Pranay Mohanty, Laxmipriya Dash, Himansu S Biswal","doi":"10.1021/acs.jpclett.4c02791","DOIUrl":null,"url":null,"abstract":"<p><p>Aromaticity is a century-old concept that is even introduced in high school textbooks. However, the determination of the order of aromaticity of molecules as simple as furan, thiophene, and selenophene is still challenging. This work describes how different theoretical and experimental methods posit different aromaticity orders. To benchmark the theoretical results and arrive at a conclusion, mass-selective electronic and vibrational spectroscopy of these five-membered heterocycles under isolated supersonic-jet-cooled conditions was necessary. Since the aromaticity order can be unveiled from the magnitude of the electron density in the ring, we used hydrogen bonding as a probe. The experimental results revealed that selenophene forms the strongest π-hydrogen bond, suggesting that selenophene is the most aromatic, followed by thiophene and furan. It is concluded that gauge-including magnetically induced currents (GIMIC) and relative <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts are better parameters to determine the aromaticity order in a similar class of molecules.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing Aromaticity with Supersonic Jet Spectroscopy: A Case Study on Furan, Thiophene, and Selenophene.\",\"authors\":\"Akshay Kumar Sahu, Anant Ram Satpathi, Saiprakash Rout, Pranay Mohanty, Laxmipriya Dash, Himansu S Biswal\",\"doi\":\"10.1021/acs.jpclett.4c02791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aromaticity is a century-old concept that is even introduced in high school textbooks. However, the determination of the order of aromaticity of molecules as simple as furan, thiophene, and selenophene is still challenging. This work describes how different theoretical and experimental methods posit different aromaticity orders. To benchmark the theoretical results and arrive at a conclusion, mass-selective electronic and vibrational spectroscopy of these five-membered heterocycles under isolated supersonic-jet-cooled conditions was necessary. Since the aromaticity order can be unveiled from the magnitude of the electron density in the ring, we used hydrogen bonding as a probe. The experimental results revealed that selenophene forms the strongest π-hydrogen bond, suggesting that selenophene is the most aromatic, followed by thiophene and furan. It is concluded that gauge-including magnetically induced currents (GIMIC) and relative <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts are better parameters to determine the aromaticity order in a similar class of molecules.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c02791\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02791","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Probing Aromaticity with Supersonic Jet Spectroscopy: A Case Study on Furan, Thiophene, and Selenophene.
Aromaticity is a century-old concept that is even introduced in high school textbooks. However, the determination of the order of aromaticity of molecules as simple as furan, thiophene, and selenophene is still challenging. This work describes how different theoretical and experimental methods posit different aromaticity orders. To benchmark the theoretical results and arrive at a conclusion, mass-selective electronic and vibrational spectroscopy of these five-membered heterocycles under isolated supersonic-jet-cooled conditions was necessary. Since the aromaticity order can be unveiled from the magnitude of the electron density in the ring, we used hydrogen bonding as a probe. The experimental results revealed that selenophene forms the strongest π-hydrogen bond, suggesting that selenophene is the most aromatic, followed by thiophene and furan. It is concluded that gauge-including magnetically induced currents (GIMIC) and relative 1H and 13C NMR chemical shifts are better parameters to determine the aromaticity order in a similar class of molecules.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.