Hao Yang , Haoran Xu , Xinxin Lin , Zengxuan Cai , Yong Xia , Yu Wang , Zejie Chen , Koutian Zhang , Yanling Wu , Jianwei Wang , Annoor Awadasseid , Wen Zhang
{"title":"新型 TMPRSS2-PROTAC 与 4-胍基-N-苯基苯甲酰胺衍生物配体的设计、合成和生物学评价。","authors":"Hao Yang , Haoran Xu , Xinxin Lin , Zengxuan Cai , Yong Xia , Yu Wang , Zejie Chen , Koutian Zhang , Yanling Wu , Jianwei Wang , Annoor Awadasseid , Wen Zhang","doi":"10.1016/j.bmc.2024.117982","DOIUrl":null,"url":null,"abstract":"<div><div>Transmembrane Serine Protease 2 (TMPRSS2) plays a critical role in tumorigenesis and progression, making its degradation a promising therapeutic strategy. In this study, we designed and synthesized TMPRSS2-PROTACs, including <strong>VPOT64</strong> and <strong>VPOT76</strong>, based on camostat. Both compounds exhibited superior inhibitory effects on HT-29 colorectal and Calu-3 lung cancer cells compared to paclitaxel. Notably, <strong>VPOT76</strong> effectively degraded TMPRSS2, significantly inhibiting the proliferation of TMPRSS2-positive HT-29 cells and inducing apoptosis with an IC<sub>50</sub> of 0.39 ± 0.01 μM. Flow cytometry analysis demonstrated that <strong>VPOT76</strong> increased early apoptotic cells in a dose-dependent manner and caused G2 phase arrest at 0.8 μM. Colony formation assays showed that <strong>VPOT76</strong> inhibited HT-29 colony formation, even at low concentrations, further confirming its anti-proliferative effect. Additionally, wound healing assays indicated that <strong>VPOT76</strong> reduced the migration of HT-29 cells after 48 h, suggesting its potential to impair tumor cell invasion and metastasis. These findings highlight the multifaceted anticancer activities of <strong>VPOT76</strong>, including apoptosis induction, cell cycle arrest, colony formation inhibition, and migration suppression. Overall, this study establishes <strong>VPOT76</strong> as a potent TMPRSS2-degrading PROTAC with strong therapeutic potential, laying the groundwork for further development of TMPRSS2-targeting treatments for colorectal and other cancers.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"116 ","pages":"Article 117982"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis and biological evaluation of novel TMPRSS2-PROTACs with florosubstituted 4-guanidino-N-phenylbenzamide derivative ligands\",\"authors\":\"Hao Yang , Haoran Xu , Xinxin Lin , Zengxuan Cai , Yong Xia , Yu Wang , Zejie Chen , Koutian Zhang , Yanling Wu , Jianwei Wang , Annoor Awadasseid , Wen Zhang\",\"doi\":\"10.1016/j.bmc.2024.117982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transmembrane Serine Protease 2 (TMPRSS2) plays a critical role in tumorigenesis and progression, making its degradation a promising therapeutic strategy. In this study, we designed and synthesized TMPRSS2-PROTACs, including <strong>VPOT64</strong> and <strong>VPOT76</strong>, based on camostat. Both compounds exhibited superior inhibitory effects on HT-29 colorectal and Calu-3 lung cancer cells compared to paclitaxel. Notably, <strong>VPOT76</strong> effectively degraded TMPRSS2, significantly inhibiting the proliferation of TMPRSS2-positive HT-29 cells and inducing apoptosis with an IC<sub>50</sub> of 0.39 ± 0.01 μM. Flow cytometry analysis demonstrated that <strong>VPOT76</strong> increased early apoptotic cells in a dose-dependent manner and caused G2 phase arrest at 0.8 μM. Colony formation assays showed that <strong>VPOT76</strong> inhibited HT-29 colony formation, even at low concentrations, further confirming its anti-proliferative effect. Additionally, wound healing assays indicated that <strong>VPOT76</strong> reduced the migration of HT-29 cells after 48 h, suggesting its potential to impair tumor cell invasion and metastasis. These findings highlight the multifaceted anticancer activities of <strong>VPOT76</strong>, including apoptosis induction, cell cycle arrest, colony formation inhibition, and migration suppression. Overall, this study establishes <strong>VPOT76</strong> as a potent TMPRSS2-degrading PROTAC with strong therapeutic potential, laying the groundwork for further development of TMPRSS2-targeting treatments for colorectal and other cancers.</div></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"116 \",\"pages\":\"Article 117982\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968089624003961\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624003961","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design, synthesis and biological evaluation of novel TMPRSS2-PROTACs with florosubstituted 4-guanidino-N-phenylbenzamide derivative ligands
Transmembrane Serine Protease 2 (TMPRSS2) plays a critical role in tumorigenesis and progression, making its degradation a promising therapeutic strategy. In this study, we designed and synthesized TMPRSS2-PROTACs, including VPOT64 and VPOT76, based on camostat. Both compounds exhibited superior inhibitory effects on HT-29 colorectal and Calu-3 lung cancer cells compared to paclitaxel. Notably, VPOT76 effectively degraded TMPRSS2, significantly inhibiting the proliferation of TMPRSS2-positive HT-29 cells and inducing apoptosis with an IC50 of 0.39 ± 0.01 μM. Flow cytometry analysis demonstrated that VPOT76 increased early apoptotic cells in a dose-dependent manner and caused G2 phase arrest at 0.8 μM. Colony formation assays showed that VPOT76 inhibited HT-29 colony formation, even at low concentrations, further confirming its anti-proliferative effect. Additionally, wound healing assays indicated that VPOT76 reduced the migration of HT-29 cells after 48 h, suggesting its potential to impair tumor cell invasion and metastasis. These findings highlight the multifaceted anticancer activities of VPOT76, including apoptosis induction, cell cycle arrest, colony formation inhibition, and migration suppression. Overall, this study establishes VPOT76 as a potent TMPRSS2-degrading PROTAC with strong therapeutic potential, laying the groundwork for further development of TMPRSS2-targeting treatments for colorectal and other cancers.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.