Jonathan T Ting, Nelson J Johansen, Brian E Kalmbach, Naz Taskin, Brian Lee, Jason K Clark, Rennie Kendrick, Lindsay Ng, Cristina Radaelli, Natalie Weed, Rachel Enstrom, Shea Ransford, Ingrid Redford, Sarah Walling-Bell, Rachel Dalley, Michael Tieu, Jeff Goldy, Nik Jorstad, Kimberly Smith, Trygve Bakken, Ed S Lein, Scott F Owen
{"title":"经分子鉴定的猕猴普鲁曼中刺神经元的独特生理机能","authors":"Jonathan T Ting, Nelson J Johansen, Brian E Kalmbach, Naz Taskin, Brian Lee, Jason K Clark, Rennie Kendrick, Lindsay Ng, Cristina Radaelli, Natalie Weed, Rachel Enstrom, Shea Ransford, Ingrid Redford, Sarah Walling-Bell, Rachel Dalley, Michael Tieu, Jeff Goldy, Nik Jorstad, Kimberly Smith, Trygve Bakken, Ed S Lein, Scott F Owen","doi":"10.1016/j.celrep.2024.114963","DOIUrl":null,"url":null,"abstract":"<p><p>The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate. Here, we show that in the macaque putamen, latency to spike is reduced and spike rate adaptation is increased relative to mouse. We use whole-cell brain slice recordings and recover single-cell gene expression using Patch-seq to distinguish macaque MSN cell types. Species differences in the expression of ion channel genes including the calcium-activated chloride channel, ANO2, and an auxiliary subunit of the A-type potassium channel, DPP10, are correlated with species differences in spike rate adaptation and latency to the first spike, respectively. These surprising divergences in physiology better define the strengths and limitations of mouse models for understanding neuronal and circuit function in the primate basal ganglia.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinctive physiology of molecularly identified medium spiny neurons in the macaque putamen.\",\"authors\":\"Jonathan T Ting, Nelson J Johansen, Brian E Kalmbach, Naz Taskin, Brian Lee, Jason K Clark, Rennie Kendrick, Lindsay Ng, Cristina Radaelli, Natalie Weed, Rachel Enstrom, Shea Ransford, Ingrid Redford, Sarah Walling-Bell, Rachel Dalley, Michael Tieu, Jeff Goldy, Nik Jorstad, Kimberly Smith, Trygve Bakken, Ed S Lein, Scott F Owen\",\"doi\":\"10.1016/j.celrep.2024.114963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate. Here, we show that in the macaque putamen, latency to spike is reduced and spike rate adaptation is increased relative to mouse. We use whole-cell brain slice recordings and recover single-cell gene expression using Patch-seq to distinguish macaque MSN cell types. Species differences in the expression of ion channel genes including the calcium-activated chloride channel, ANO2, and an auxiliary subunit of the A-type potassium channel, DPP10, are correlated with species differences in spike rate adaptation and latency to the first spike, respectively. These surprising divergences in physiology better define the strengths and limitations of mouse models for understanding neuronal and circuit function in the primate basal ganglia.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.114963\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114963","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Distinctive physiology of molecularly identified medium spiny neurons in the macaque putamen.
The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate. Here, we show that in the macaque putamen, latency to spike is reduced and spike rate adaptation is increased relative to mouse. We use whole-cell brain slice recordings and recover single-cell gene expression using Patch-seq to distinguish macaque MSN cell types. Species differences in the expression of ion channel genes including the calcium-activated chloride channel, ANO2, and an auxiliary subunit of the A-type potassium channel, DPP10, are correlated with species differences in spike rate adaptation and latency to the first spike, respectively. These surprising divergences in physiology better define the strengths and limitations of mouse models for understanding neuronal and circuit function in the primate basal ganglia.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.