在熔融电泳膜中进行小特征复制的热成型技术,以模拟肾近曲小管。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2024-11-07 DOI:10.1002/adhm.202401800
Marta G Valverde, Claudia Stampa Zamorano, Dora Kožinec, Laura Benito Zarza, Anne Metje van Genderen, Robine Janssen, Miguel Castilho, Andrei Hrynevich, Tina Vermonden, Jos Malda, Mylene de Ruijter, Rosalinde Masereeuw, Silvia M Mihăilă
{"title":"在熔融电泳膜中进行小特征复制的热成型技术,以模拟肾近曲小管。","authors":"Marta G Valverde, Claudia Stampa Zamorano, Dora Kožinec, Laura Benito Zarza, Anne Metje van Genderen, Robine Janssen, Miguel Castilho, Andrei Hrynevich, Tina Vermonden, Jos Malda, Mylene de Ruijter, Rosalinde Masereeuw, Silvia M Mihăilă","doi":"10.1002/adhm.202401800","DOIUrl":null,"url":null,"abstract":"<p><p>A novel approach merging melt electrowriting (MEW) with matched die thermoforming to achieve scaffolds with micron-sized curvatures (200 - 800 µm versus 1000 µm of mandrel printing) for in vitro modeling of the kidney proximal tubule (PT) is proposed. Recent advances in this field emphasize the relevance of accurately replicating the intricate tissue microenvironment, particularly the curvature of the nephrons' tubular segments. While MEW offers promising capabilities for fabricating highly and porous precise 3D structures mimicking the PT, challenges persist in approximating the diameter of tubular scaffolds to match the actual PT. The thermoformed MEW membranes retain the initial MEW printing design parameters (rhombus geometry, porosity > 45%) while accurately following the imprinted curvature (ratios between 0.67-0.95). PT epithelial cells cultured on these membranes demonstrate the ability to fill in the large pores of the membrane by secreting their own collagen IV-rich extracellular matrix and form an organized, functional, and tight monolayer expressing characteristic PT markers. Besides approximating PT architecture, this setup maximizes the usable surface area for cell culture and molecular readouts. By closely mimicking the structural intricacies of native tissue architecture, this approach enhances the biomimetic fidelity of engineered scaffolds, offering potential applications beyond kidney tissue engineering.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoforming for Small Feature Replication in Melt Electrowritten Membranes to Model Kidney Proximal Tubule.\",\"authors\":\"Marta G Valverde, Claudia Stampa Zamorano, Dora Kožinec, Laura Benito Zarza, Anne Metje van Genderen, Robine Janssen, Miguel Castilho, Andrei Hrynevich, Tina Vermonden, Jos Malda, Mylene de Ruijter, Rosalinde Masereeuw, Silvia M Mihăilă\",\"doi\":\"10.1002/adhm.202401800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel approach merging melt electrowriting (MEW) with matched die thermoforming to achieve scaffolds with micron-sized curvatures (200 - 800 µm versus 1000 µm of mandrel printing) for in vitro modeling of the kidney proximal tubule (PT) is proposed. Recent advances in this field emphasize the relevance of accurately replicating the intricate tissue microenvironment, particularly the curvature of the nephrons' tubular segments. While MEW offers promising capabilities for fabricating highly and porous precise 3D structures mimicking the PT, challenges persist in approximating the diameter of tubular scaffolds to match the actual PT. The thermoformed MEW membranes retain the initial MEW printing design parameters (rhombus geometry, porosity > 45%) while accurately following the imprinted curvature (ratios between 0.67-0.95). PT epithelial cells cultured on these membranes demonstrate the ability to fill in the large pores of the membrane by secreting their own collagen IV-rich extracellular matrix and form an organized, functional, and tight monolayer expressing characteristic PT markers. Besides approximating PT architecture, this setup maximizes the usable surface area for cell culture and molecular readouts. By closely mimicking the structural intricacies of native tissue architecture, this approach enhances the biomimetic fidelity of engineered scaffolds, offering potential applications beyond kidney tissue engineering.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202401800\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202401800","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种将熔体电泳(MEW)与匹配模具热成型相结合的新方法,以实现微米级曲率(200 - 800 微米,而芯模印刷为 1000 微米)的支架,用于肾近曲小管(PT)的体外建模。该领域的最新进展强调了精确复制错综复杂的组织微环境,特别是肾小管节段曲率的重要性。虽然 MEW 为制造模仿 PT 的高精度多孔三维结构提供了前景广阔的能力,但在接近肾小管支架直径以匹配实际 PT 方面仍然存在挑战。热成型 MEW 膜保留了最初的 MEW 打印设计参数(菱形几何形状,孔隙率大于 45%),同时精确地遵循了压印曲率(比率在 0.67-0.95 之间)。在这些膜上培养的 PT 上皮细胞通过分泌富含胶原蛋白 IV 的细胞外基质来填充膜上的大孔,并形成一个有组织、有功能、紧密的单层,表达 PT 的特征标记。除了近似 PT 结构外,这种设置还最大限度地扩大了细胞培养和分子读数的可用表面积。通过近似模拟原生组织结构的复杂性,这种方法提高了工程支架的生物仿真保真度,为肾脏组织工程以外的应用提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermoforming for Small Feature Replication in Melt Electrowritten Membranes to Model Kidney Proximal Tubule.

A novel approach merging melt electrowriting (MEW) with matched die thermoforming to achieve scaffolds with micron-sized curvatures (200 - 800 µm versus 1000 µm of mandrel printing) for in vitro modeling of the kidney proximal tubule (PT) is proposed. Recent advances in this field emphasize the relevance of accurately replicating the intricate tissue microenvironment, particularly the curvature of the nephrons' tubular segments. While MEW offers promising capabilities for fabricating highly and porous precise 3D structures mimicking the PT, challenges persist in approximating the diameter of tubular scaffolds to match the actual PT. The thermoformed MEW membranes retain the initial MEW printing design parameters (rhombus geometry, porosity > 45%) while accurately following the imprinted curvature (ratios between 0.67-0.95). PT epithelial cells cultured on these membranes demonstrate the ability to fill in the large pores of the membrane by secreting their own collagen IV-rich extracellular matrix and form an organized, functional, and tight monolayer expressing characteristic PT markers. Besides approximating PT architecture, this setup maximizes the usable surface area for cell culture and molecular readouts. By closely mimicking the structural intricacies of native tissue architecture, this approach enhances the biomimetic fidelity of engineered scaffolds, offering potential applications beyond kidney tissue engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
ECM Proteins Nidogen-1 and Decorin Restore Functionality of Human Islets of Langerhans upon Hypoxic Conditions. Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. In Situ Forming Supramolecular Nanofiber Hydrogel as a Biodegradable Liquid Embolic Agent for Postembolization Tissue Remodeling. Thermoforming for Small Feature Replication in Melt Electrowritten Membranes to Model Kidney Proximal Tubule. Hyaluronic Acid-Based 3D Bioprinted Hydrogel Structure for Directed Axonal Guidance and Modeling Innervation In Vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1