可充电氢气电池:基础、原理、材料和应用。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-11-07 DOI:10.1002/adma.202412108
Taoli Jiang, Ziwei Zhang, Shuyang Wei, Shunxin Tan, Hongxu Liu, Wei Chen
{"title":"可充电氢气电池:基础、原理、材料和应用。","authors":"Taoli Jiang, Ziwei Zhang, Shuyang Wei, Shunxin Tan, Hongxu Liu, Wei Chen","doi":"10.1002/adma.202412108","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for renewable energy sources has accelerated a boom in research on new battery chemistries. Despite decades of development for various battery types, including lithium-ion batteries, their suitability for grid-scale energy storage applications remains imperfect. In recent years, rechargeable hydrogen gas batteries (HGBs), utilizing hydrogen catalytic electrode as anode, have attracted extensive academic and industrial attention. HGBs, facilitated by appropriate catalysts, demonstrate notable attributes such as high power density, high capacity, excellent low-temperature performance, and ultralong cycle life. This review presents a comprehensive overview of four key aspects pertaining to HGBs: fundamentals, principles, materials, and applications. First, detailed insights are provided into hydrogen electrodes, encompassing electrochemical principles, hydrogen catalytic mechanisms, advancements in hydrogen catalytic materials, and structural considerations in hydrogen electrode design. Second, an examination and future prospects of cathode material compatibility, encompassing both current and potential materials, are summarized. Third, other components and engineering considerations of HGBs are elaborated, including cell stack design and pressure vessel design. Finally, a techno-economic analysis and outlook offers an overview of the current status and future prospects of HGBs, indicating their orientation for further research and application advancements.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rechargeable Hydrogen Gas Batteries: Fundamentals, Principles, Materials, and Applications.\",\"authors\":\"Taoli Jiang, Ziwei Zhang, Shuyang Wei, Shunxin Tan, Hongxu Liu, Wei Chen\",\"doi\":\"10.1002/adma.202412108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing demand for renewable energy sources has accelerated a boom in research on new battery chemistries. Despite decades of development for various battery types, including lithium-ion batteries, their suitability for grid-scale energy storage applications remains imperfect. In recent years, rechargeable hydrogen gas batteries (HGBs), utilizing hydrogen catalytic electrode as anode, have attracted extensive academic and industrial attention. HGBs, facilitated by appropriate catalysts, demonstrate notable attributes such as high power density, high capacity, excellent low-temperature performance, and ultralong cycle life. This review presents a comprehensive overview of four key aspects pertaining to HGBs: fundamentals, principles, materials, and applications. First, detailed insights are provided into hydrogen electrodes, encompassing electrochemical principles, hydrogen catalytic mechanisms, advancements in hydrogen catalytic materials, and structural considerations in hydrogen electrode design. Second, an examination and future prospects of cathode material compatibility, encompassing both current and potential materials, are summarized. Third, other components and engineering considerations of HGBs are elaborated, including cell stack design and pressure vessel design. Finally, a techno-economic analysis and outlook offers an overview of the current status and future prospects of HGBs, indicating their orientation for further research and application advancements.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202412108\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412108","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

对可再生能源日益增长的需求加速了新型电池化学成分的研究热潮。尽管包括锂离子电池在内的各种电池类型已经发展了数十年,但它们在电网规模储能应用中的适用性仍不完善。近年来,利用氢催化电极作为阳极的可充电氢气电池(HGB)引起了学术界和工业界的广泛关注。在适当催化剂的促进下,氢气电池具有高功率密度、高容量、优异的低温性能和超长循环寿命等显著特点。本综述全面概述了有关 HGB 的四个关键方面:基础、原理、材料和应用。首先,详细介绍了氢电极,包括电化学原理、氢催化机制、氢催化材料的进展以及氢电极设计中的结构考虑因素。其次,概述了阴极材料兼容性的研究和未来前景,包括当前和潜在的材料。第三,阐述了氢气电池组的其他组件和工程考虑因素,包括电池堆设计和压力容器设计。最后,技术经济分析和展望概述了 HGB 的现状和未来前景,指明了其进一步研究和应用发展的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rechargeable Hydrogen Gas Batteries: Fundamentals, Principles, Materials, and Applications.

The growing demand for renewable energy sources has accelerated a boom in research on new battery chemistries. Despite decades of development for various battery types, including lithium-ion batteries, their suitability for grid-scale energy storage applications remains imperfect. In recent years, rechargeable hydrogen gas batteries (HGBs), utilizing hydrogen catalytic electrode as anode, have attracted extensive academic and industrial attention. HGBs, facilitated by appropriate catalysts, demonstrate notable attributes such as high power density, high capacity, excellent low-temperature performance, and ultralong cycle life. This review presents a comprehensive overview of four key aspects pertaining to HGBs: fundamentals, principles, materials, and applications. First, detailed insights are provided into hydrogen electrodes, encompassing electrochemical principles, hydrogen catalytic mechanisms, advancements in hydrogen catalytic materials, and structural considerations in hydrogen electrode design. Second, an examination and future prospects of cathode material compatibility, encompassing both current and potential materials, are summarized. Third, other components and engineering considerations of HGBs are elaborated, including cell stack design and pressure vessel design. Finally, a techno-economic analysis and outlook offers an overview of the current status and future prospects of HGBs, indicating their orientation for further research and application advancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Highly Specific and Rapid Multiplex Identification of Candida Species Using Digital Microfluidics Integrated with a Semi-Nested Genoarray Advancing Targeted Metabolomics Using Cyanopropyl-Based Liquid Chromatography Tandem Mass Spectrometry Electrochemical Reactions Affected by Electric Double Layer Overlap in Conducting Nanopores A Novel Colon-Targeting Ratiometric Probe with Large Emission Shift for Imaging Peroxynitrite in Ulcerative Colitis Enantiomer-Specific Stable Carbon and Nitrogen Isotopic Analyses of Underivatized Individual l- and d-Amino Acids by HPLC + HPLC Separation and Nano-EA/IRMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1