Eric Thomas Winzenried, Drew Mackenzie Neyens, Rowan J Calkins, Suzanne M Appleyard
{"title":"NTS 中的 CCK 表达神经元直接被 CCK 敏感的 C 型迷走神经传入激活。","authors":"Eric Thomas Winzenried, Drew Mackenzie Neyens, Rowan J Calkins, Suzanne M Appleyard","doi":"10.1152/ajpregu.00280.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Vagal sensory afferents carrying information from the gastrointestinal tract (GI) terminate in the nucleus of the solitary tract (NTS). Different subpopulations of NTS neurons then relay this information throughout the brain. Cholecystokinin (CCK) is a satiety peptide that activates vagal afferents in the GI. However, CCK is also expressed by neurons in the NTS, and activation of these neurons decreases food intake. What is less clear is how these NTS CCK neurons are activated by vagal afferents and what type of information they integrate about meal size and content. To address this, we identified NTS-CCK neurons by crossing CCK-IRES-Cre mice with floxed-Rosa-tdtomato mice and made a horizontal brain slice containing vagal afferents in the solitary tract (ST). Voltage clamp recordings of NTS-CCK neurons show that activation of the ST evokes excitatory post-synaptic currents (EPSCs) mediated by both AMPA and NMDA receptors. Analysis of these EPSCs revealed that 80% of NTS-CCK neurons receive direct, monosynaptic inputs, with many also receiving indirect, or polysynaptic, inputs. NTS-CCK neurons are sensitive to the TRPV1 agonist capsaicin, suggesting they are downstream of C-fibers. In addition, both CCK and a 5-HT3R agonist increased sEPSC frequency in NTS-CCK neurons, with 69% of NTS-CCK neurons sensitive to CCK and 42% to 5-HT3 receptor agonists, as well as 45% sensitive to both and 10% to neither. Taken together with previous studies, this suggests that NTS-CCK neurons are driven primarily by vagal afferents that are sensitive to CCK and are only weakly driven by those sensitive to 5-HT.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CCK expressing neurons in the NTS are directly activated by CCK-sensitive C-type vagal afferents.\",\"authors\":\"Eric Thomas Winzenried, Drew Mackenzie Neyens, Rowan J Calkins, Suzanne M Appleyard\",\"doi\":\"10.1152/ajpregu.00280.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vagal sensory afferents carrying information from the gastrointestinal tract (GI) terminate in the nucleus of the solitary tract (NTS). Different subpopulations of NTS neurons then relay this information throughout the brain. Cholecystokinin (CCK) is a satiety peptide that activates vagal afferents in the GI. However, CCK is also expressed by neurons in the NTS, and activation of these neurons decreases food intake. What is less clear is how these NTS CCK neurons are activated by vagal afferents and what type of information they integrate about meal size and content. To address this, we identified NTS-CCK neurons by crossing CCK-IRES-Cre mice with floxed-Rosa-tdtomato mice and made a horizontal brain slice containing vagal afferents in the solitary tract (ST). Voltage clamp recordings of NTS-CCK neurons show that activation of the ST evokes excitatory post-synaptic currents (EPSCs) mediated by both AMPA and NMDA receptors. Analysis of these EPSCs revealed that 80% of NTS-CCK neurons receive direct, monosynaptic inputs, with many also receiving indirect, or polysynaptic, inputs. NTS-CCK neurons are sensitive to the TRPV1 agonist capsaicin, suggesting they are downstream of C-fibers. In addition, both CCK and a 5-HT3R agonist increased sEPSC frequency in NTS-CCK neurons, with 69% of NTS-CCK neurons sensitive to CCK and 42% to 5-HT3 receptor agonists, as well as 45% sensitive to both and 10% to neither. Taken together with previous studies, this suggests that NTS-CCK neurons are driven primarily by vagal afferents that are sensitive to CCK and are only weakly driven by those sensitive to 5-HT.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00280.2023\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00280.2023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
CCK expressing neurons in the NTS are directly activated by CCK-sensitive C-type vagal afferents.
Vagal sensory afferents carrying information from the gastrointestinal tract (GI) terminate in the nucleus of the solitary tract (NTS). Different subpopulations of NTS neurons then relay this information throughout the brain. Cholecystokinin (CCK) is a satiety peptide that activates vagal afferents in the GI. However, CCK is also expressed by neurons in the NTS, and activation of these neurons decreases food intake. What is less clear is how these NTS CCK neurons are activated by vagal afferents and what type of information they integrate about meal size and content. To address this, we identified NTS-CCK neurons by crossing CCK-IRES-Cre mice with floxed-Rosa-tdtomato mice and made a horizontal brain slice containing vagal afferents in the solitary tract (ST). Voltage clamp recordings of NTS-CCK neurons show that activation of the ST evokes excitatory post-synaptic currents (EPSCs) mediated by both AMPA and NMDA receptors. Analysis of these EPSCs revealed that 80% of NTS-CCK neurons receive direct, monosynaptic inputs, with many also receiving indirect, or polysynaptic, inputs. NTS-CCK neurons are sensitive to the TRPV1 agonist capsaicin, suggesting they are downstream of C-fibers. In addition, both CCK and a 5-HT3R agonist increased sEPSC frequency in NTS-CCK neurons, with 69% of NTS-CCK neurons sensitive to CCK and 42% to 5-HT3 receptor agonists, as well as 45% sensitive to both and 10% to neither. Taken together with previous studies, this suggests that NTS-CCK neurons are driven primarily by vagal afferents that are sensitive to CCK and are only weakly driven by those sensitive to 5-HT.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.