评估职业接触碳纤维增强塑料加工过程中产生的微/纳米颗粒的情况。

IF 1.8 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Annals Of Work Exposures and Health Pub Date : 2024-11-08 DOI:10.1093/annweh/wxae081
Jun Kumoi, Akihiko Ikegami, Yutaka Matsumi, Yuji Fujitani, Gaku Ichihara, Takeo Yano, Sahoko Ichihara
{"title":"评估职业接触碳纤维增强塑料加工过程中产生的微/纳米颗粒的情况。","authors":"Jun Kumoi, Akihiko Ikegami, Yutaka Matsumi, Yuji Fujitani, Gaku Ichihara, Takeo Yano, Sahoko Ichihara","doi":"10.1093/annweh/wxae081","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon fiber-reinforced plastics (CFRP) are leading functional materials with superior strength and low mass density compared to metal. Our previous factory site analyses found that CFRP processing generates fibrous debris and fine micro/nano-sized particles of various shapes. The present interventional study was conducted at a factory located in Japan and evaluated debris consisting of various-sized particles generated during the industrial processing of CFRP, such as cutting, grinding, and turning of CFRP pipes, using real-time particle monitoring devices of the following: PM4 Digital Dust Monitor (DDM), handled Optical Particle Counter (OPC), Condensation Particle Counter (CPC), and Scanning Mobility Particle Sizer (SMPS). In addition, personal exposure of workers was evaluated using a novel wearable PM2.5-compatible device (P-sensor). First, we confirmed the presence of micro/nano particles in the dust generated during industrial processing of CFRP. Finer CFRP-generated particles were detected by the nanoparticle-compatible devices; CPC and SMPS, but not by OPC or DDM. The dynamic detection pattern of the P-sensor resembled that recorded by the nanoparticle-compatible devices. The novel wearable P-sensor can be used to measure finer particles generated by CFRP processing in occupational settings. Second, the exposure assessment was conducted twice and the levels of the micro/nano particles in the second survey were significantly (less than half) lower than that in the first survey. By avoiding immediate power-off of the exhaust system after operations, the scattering of particles was effectively reduced. Our results indicate that effective use of local exhaust ventilation system improves the workplace environment for particle exposure.</p>","PeriodicalId":8362,"journal":{"name":"Annals Of Work Exposures and Health","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of occupational exposure to micro/nano particles generated from carbon fiber-reinforced plastic processing.\",\"authors\":\"Jun Kumoi, Akihiko Ikegami, Yutaka Matsumi, Yuji Fujitani, Gaku Ichihara, Takeo Yano, Sahoko Ichihara\",\"doi\":\"10.1093/annweh/wxae081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon fiber-reinforced plastics (CFRP) are leading functional materials with superior strength and low mass density compared to metal. Our previous factory site analyses found that CFRP processing generates fibrous debris and fine micro/nano-sized particles of various shapes. The present interventional study was conducted at a factory located in Japan and evaluated debris consisting of various-sized particles generated during the industrial processing of CFRP, such as cutting, grinding, and turning of CFRP pipes, using real-time particle monitoring devices of the following: PM4 Digital Dust Monitor (DDM), handled Optical Particle Counter (OPC), Condensation Particle Counter (CPC), and Scanning Mobility Particle Sizer (SMPS). In addition, personal exposure of workers was evaluated using a novel wearable PM2.5-compatible device (P-sensor). First, we confirmed the presence of micro/nano particles in the dust generated during industrial processing of CFRP. Finer CFRP-generated particles were detected by the nanoparticle-compatible devices; CPC and SMPS, but not by OPC or DDM. The dynamic detection pattern of the P-sensor resembled that recorded by the nanoparticle-compatible devices. The novel wearable P-sensor can be used to measure finer particles generated by CFRP processing in occupational settings. Second, the exposure assessment was conducted twice and the levels of the micro/nano particles in the second survey were significantly (less than half) lower than that in the first survey. By avoiding immediate power-off of the exhaust system after operations, the scattering of particles was effectively reduced. Our results indicate that effective use of local exhaust ventilation system improves the workplace environment for particle exposure.</p>\",\"PeriodicalId\":8362,\"journal\":{\"name\":\"Annals Of Work Exposures and Health\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals Of Work Exposures and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/annweh/wxae081\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals Of Work Exposures and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/annweh/wxae081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维增强塑料(CFRP)是一种领先的功能材料,与金属相比,它具有强度高、质量密度低的特点。我们之前的工厂现场分析发现,碳纤维增强塑料在加工过程中会产生各种形状的纤维碎片和微小/纳米级颗粒。本干预性研究在日本的一家工厂进行,使用以下实时颗粒监测设备评估了 CFRP 工业加工过程中产生的由各种大小颗粒组成的碎片,如 CFRP 管道的切割、打磨和车削:PM4 数字粉尘监测仪(DDM)、手持式光学粒子计数器(OPC)、冷凝粒子计数器(CPC)和扫描移动式粒子测定仪(SMPS)。此外,我们还使用新型可穿戴式 PM2.5 兼容设备(P 传感器)对工人的个人暴露进行了评估。首先,我们证实了在 CFRP 工业加工过程中产生的粉尘中存在微/纳米颗粒。与纳米颗粒兼容的设备(CPC 和 SMPS)可以检测到较细的 CFRP 颗粒,而 OPC 或 DDM 则检测不到。P 传感器的动态检测模式与纳米粒子兼容设备记录的模式相似。新型可穿戴 P 传感器可用于测量职业环境中 CFRP 加工产生的更细颗粒。其次,暴露评估进行了两次,第二次调查中的微米/纳米颗粒水平明显低于第一次调查(不到一半)。通过避免在操作后立即关闭排气系统,有效减少了微粒的散射。我们的研究结果表明,有效使用局部排气通风系统可以改善工作场所的微粒暴露环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of occupational exposure to micro/nano particles generated from carbon fiber-reinforced plastic processing.

Carbon fiber-reinforced plastics (CFRP) are leading functional materials with superior strength and low mass density compared to metal. Our previous factory site analyses found that CFRP processing generates fibrous debris and fine micro/nano-sized particles of various shapes. The present interventional study was conducted at a factory located in Japan and evaluated debris consisting of various-sized particles generated during the industrial processing of CFRP, such as cutting, grinding, and turning of CFRP pipes, using real-time particle monitoring devices of the following: PM4 Digital Dust Monitor (DDM), handled Optical Particle Counter (OPC), Condensation Particle Counter (CPC), and Scanning Mobility Particle Sizer (SMPS). In addition, personal exposure of workers was evaluated using a novel wearable PM2.5-compatible device (P-sensor). First, we confirmed the presence of micro/nano particles in the dust generated during industrial processing of CFRP. Finer CFRP-generated particles were detected by the nanoparticle-compatible devices; CPC and SMPS, but not by OPC or DDM. The dynamic detection pattern of the P-sensor resembled that recorded by the nanoparticle-compatible devices. The novel wearable P-sensor can be used to measure finer particles generated by CFRP processing in occupational settings. Second, the exposure assessment was conducted twice and the levels of the micro/nano particles in the second survey were significantly (less than half) lower than that in the first survey. By avoiding immediate power-off of the exhaust system after operations, the scattering of particles was effectively reduced. Our results indicate that effective use of local exhaust ventilation system improves the workplace environment for particle exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals Of Work Exposures and Health
Annals Of Work Exposures and Health Medicine-Public Health, Environmental and Occupational Health
CiteScore
4.60
自引率
19.20%
发文量
79
期刊介绍: About the Journal Annals of Work Exposures and Health is dedicated to presenting advances in exposure science supporting the recognition, quantification, and control of exposures at work, and epidemiological studies on their effects on human health and well-being. A key question we apply to submission is, "Is this paper going to help readers better understand, quantify, and control conditions at work that adversely or positively affect health and well-being?" We are interested in high quality scientific research addressing: the quantification of work exposures, including chemical, biological, physical, biomechanical, and psychosocial, and the elements of work organization giving rise to such exposures; the relationship between these exposures and the acute and chronic health consequences for those exposed and their families and communities; populations at special risk of work-related exposures including women, under-represented minorities, immigrants, and other vulnerable groups such as temporary, contingent and informal sector workers; the effectiveness of interventions addressing exposure and risk including production technologies, work process engineering, and personal protective systems; policies and management approaches to reduce risk and improve health and well-being among workers, their families or communities; methodologies and mechanisms that underlie the quantification and/or control of exposure and risk. There is heavy pressure on space in the journal, and the above interests mean that we do not usually publish papers that simply report local conditions without generalizable results. We are also unlikely to publish reports on human health and well-being without information on the work exposure characteristics giving rise to the effects. We particularly welcome contributions from scientists based in, or addressing conditions in, developing economies that fall within the above scope.
期刊最新文献
The leadup to the artificial stone ban in Australia. Determination of ultrafine particle number emission factors from building materials in standardized conditions. Managing SARS-CoV-2 transmission risk in workplace COVID-19 outbreaks. Correspondence. Assessment of occupational exposure to micro/nano particles generated from carbon fiber-reinforced plastic processing. Evaluation of hand-arm vibration (HAV) exposure among groundskeepers in the southeastern United States.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1