Ingrid Berg, Pia Härvelid, Wolfgang Emanuel Zürrer, Marianna Rosso, Daniel S Reich, Benjamin Victor Ineichen
{"title":"在多发性硬化症药物开发过程中,哪些实验因素影响着从动物到人体的成功转化?系统回顾与荟萃分析。","authors":"Ingrid Berg, Pia Härvelid, Wolfgang Emanuel Zürrer, Marianna Rosso, Daniel S Reich, Benjamin Victor Ineichen","doi":"10.1016/j.ebiom.2024.105434","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite successes in multiple sclerosis (MS) drug development, the effectiveness of animal studies in predicting successful bench-to-bedside translation is uncertain. Our goal was to identify predictors of successful animal-to-human translation for MS by systematically comparing animal studies of approved disease-modifying therapies (DMTs) with those that failed in clinical trials due to efficacy or safety concerns.</p><p><strong>Methods: </strong>Systematic review of animal studies testing MS DMTs, identified from searches in PubMed and EMBASE. A random effect meta-analysis was fitted to the data to compare outcome effect sizes for approved versus failed DMTs. Effect sizes and testing under diverse experimental conditions were assessed as potential predictors for successful translation.</p><p><strong>Findings: </strong>We included 497 animal studies, covering 15 approved and 11 failed DMTs, tested in approximately 30'000 animals. DMTs were tested in a small repertoire of experimental parameters: about 86% of studies used experimental autoimmune encephalomyelitis (EAE), 80% used mice, and 76% used female animals. There was no association between animal study outcomes or testing DMTs under varied conditions (e.g., different laboratories or models) and successful approval. Surprisingly, 91% of animal studies were published after first-in-MS trial and 91% after official regulatory approval.</p><p><strong>Interpretation: </strong>Our findings emphasize the complexity in carrying drugs from animals to clinical practice. Specific challenges include limited experimental methods in animal research and a disconnect between preclinical and clinical research. We advocate for efforts to streamline drug development for MS to improve animal research's relevance for patients.</p><p><strong>Funding: </strong>NIH, Swiss National Science Foundation, Universities Federation for Animal Welfare.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"110 ","pages":"105434"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Which experimental factors govern successful animal-to-human translation in multiple sclerosis drug development? A systematic review and meta-analysis.\",\"authors\":\"Ingrid Berg, Pia Härvelid, Wolfgang Emanuel Zürrer, Marianna Rosso, Daniel S Reich, Benjamin Victor Ineichen\",\"doi\":\"10.1016/j.ebiom.2024.105434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite successes in multiple sclerosis (MS) drug development, the effectiveness of animal studies in predicting successful bench-to-bedside translation is uncertain. Our goal was to identify predictors of successful animal-to-human translation for MS by systematically comparing animal studies of approved disease-modifying therapies (DMTs) with those that failed in clinical trials due to efficacy or safety concerns.</p><p><strong>Methods: </strong>Systematic review of animal studies testing MS DMTs, identified from searches in PubMed and EMBASE. A random effect meta-analysis was fitted to the data to compare outcome effect sizes for approved versus failed DMTs. Effect sizes and testing under diverse experimental conditions were assessed as potential predictors for successful translation.</p><p><strong>Findings: </strong>We included 497 animal studies, covering 15 approved and 11 failed DMTs, tested in approximately 30'000 animals. DMTs were tested in a small repertoire of experimental parameters: about 86% of studies used experimental autoimmune encephalomyelitis (EAE), 80% used mice, and 76% used female animals. There was no association between animal study outcomes or testing DMTs under varied conditions (e.g., different laboratories or models) and successful approval. Surprisingly, 91% of animal studies were published after first-in-MS trial and 91% after official regulatory approval.</p><p><strong>Interpretation: </strong>Our findings emphasize the complexity in carrying drugs from animals to clinical practice. Specific challenges include limited experimental methods in animal research and a disconnect between preclinical and clinical research. We advocate for efforts to streamline drug development for MS to improve animal research's relevance for patients.</p><p><strong>Funding: </strong>NIH, Swiss National Science Foundation, Universities Federation for Animal Welfare.</p>\",\"PeriodicalId\":11494,\"journal\":{\"name\":\"EBioMedicine\",\"volume\":\"110 \",\"pages\":\"105434\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EBioMedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ebiom.2024.105434\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105434","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Which experimental factors govern successful animal-to-human translation in multiple sclerosis drug development? A systematic review and meta-analysis.
Background: Despite successes in multiple sclerosis (MS) drug development, the effectiveness of animal studies in predicting successful bench-to-bedside translation is uncertain. Our goal was to identify predictors of successful animal-to-human translation for MS by systematically comparing animal studies of approved disease-modifying therapies (DMTs) with those that failed in clinical trials due to efficacy or safety concerns.
Methods: Systematic review of animal studies testing MS DMTs, identified from searches in PubMed and EMBASE. A random effect meta-analysis was fitted to the data to compare outcome effect sizes for approved versus failed DMTs. Effect sizes and testing under diverse experimental conditions were assessed as potential predictors for successful translation.
Findings: We included 497 animal studies, covering 15 approved and 11 failed DMTs, tested in approximately 30'000 animals. DMTs were tested in a small repertoire of experimental parameters: about 86% of studies used experimental autoimmune encephalomyelitis (EAE), 80% used mice, and 76% used female animals. There was no association between animal study outcomes or testing DMTs under varied conditions (e.g., different laboratories or models) and successful approval. Surprisingly, 91% of animal studies were published after first-in-MS trial and 91% after official regulatory approval.
Interpretation: Our findings emphasize the complexity in carrying drugs from animals to clinical practice. Specific challenges include limited experimental methods in animal research and a disconnect between preclinical and clinical research. We advocate for efforts to streamline drug development for MS to improve animal research's relevance for patients.
Funding: NIH, Swiss National Science Foundation, Universities Federation for Animal Welfare.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.