全反式维甲酸可抑制胶质母细胞瘤的发展并减轻辐射引起的脑损伤。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL JCI insight Pub Date : 2024-11-08 DOI:10.1172/jci.insight.179530
Min Fu, Yiling Zhang, Bi Peng, Na Luo, Yuanyuan Zhang, Wenjun Zhu, Feng Yang, Ziqi Chen, Qiang Zhang, Qianxia Li, Xin Chen, Yuanhui Liu, Guoxian Long, Guangyuan Hu, Xiaohong Peng
{"title":"全反式维甲酸可抑制胶质母细胞瘤的发展并减轻辐射引起的脑损伤。","authors":"Min Fu, Yiling Zhang, Bi Peng, Na Luo, Yuanyuan Zhang, Wenjun Zhu, Feng Yang, Ziqi Chen, Qiang Zhang, Qianxia Li, Xin Chen, Yuanhui Liu, Guoxian Long, Guangyuan Hu, Xiaohong Peng","doi":"10.1172/jci.insight.179530","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy (RT) remains a primary treatment modality for glioblastoma (GBM), but it induces cellular senescence and is strongly implicated in GBM progression and RT-related injury. Recently, eliminating senescent cells has emerged as a promising strategy for treating cancer and for mitigating radiation-induced brain injury (RBI). Here, we investigated the impact of all-trans retinoic acid (RA) on radiation-induced senescence. The findings of this study revealed that RA effectively eliminated astrocytes, which are particularly prone to senescence after radiation, and that the removal of senescence-associated secretory phenotype factor-producing astrocytes inhibited GBM cell proliferation in vitro. Moreover, RA-mediated clearance of senescent cells improved survival in GBM-bearing mice and alleviated radiation-induced cognitive impairment. Through RNA sequencing, we found that the AKT/mTOR/PPARγ/Plin4 signaling pathway is involved in RA-mediated clearance of senescent cells. In summary, these results suggest that RA could be a potential senolytic drug for preventing GBM progression and improving RBI.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 21","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-trans retinoic acid inhibits glioblastoma progression and attenuates radiation-induced brain injury.\",\"authors\":\"Min Fu, Yiling Zhang, Bi Peng, Na Luo, Yuanyuan Zhang, Wenjun Zhu, Feng Yang, Ziqi Chen, Qiang Zhang, Qianxia Li, Xin Chen, Yuanhui Liu, Guoxian Long, Guangyuan Hu, Xiaohong Peng\",\"doi\":\"10.1172/jci.insight.179530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiotherapy (RT) remains a primary treatment modality for glioblastoma (GBM), but it induces cellular senescence and is strongly implicated in GBM progression and RT-related injury. Recently, eliminating senescent cells has emerged as a promising strategy for treating cancer and for mitigating radiation-induced brain injury (RBI). Here, we investigated the impact of all-trans retinoic acid (RA) on radiation-induced senescence. The findings of this study revealed that RA effectively eliminated astrocytes, which are particularly prone to senescence after radiation, and that the removal of senescence-associated secretory phenotype factor-producing astrocytes inhibited GBM cell proliferation in vitro. Moreover, RA-mediated clearance of senescent cells improved survival in GBM-bearing mice and alleviated radiation-induced cognitive impairment. Through RNA sequencing, we found that the AKT/mTOR/PPARγ/Plin4 signaling pathway is involved in RA-mediated clearance of senescent cells. In summary, these results suggest that RA could be a potential senolytic drug for preventing GBM progression and improving RBI.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\"9 21\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.179530\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.179530","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

放射治疗(RT)仍然是胶质母细胞瘤(GBM)的主要治疗方式,但它会诱导细胞衰老,并与 GBM 的发展和 RT 相关损伤密切相关。最近,消除衰老细胞已成为治疗癌症和减轻辐射诱导的脑损伤(RBI)的一种有前途的策略。在此,我们研究了全反式维甲酸(RA)对辐射诱导衰老的影响。研究结果表明,RA 能有效清除辐射后特别容易衰老的星形胶质细胞,而清除衰老相关分泌表型因子的星形胶质细胞能抑制体外 GBM 细胞的增殖。此外,RA介导的衰老细胞清除提高了GBM小鼠的存活率,并减轻了辐射引起的认知障碍。通过 RNA 测序,我们发现 AKT/mTOR/PPARγ/Plin4 信号通路参与了 RA 介导的衰老细胞清除。总之,这些结果表明,RA 可作为一种潜在的衰老分解药物,用于预防 GBM 的进展和改善 RBI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All-trans retinoic acid inhibits glioblastoma progression and attenuates radiation-induced brain injury.

Radiotherapy (RT) remains a primary treatment modality for glioblastoma (GBM), but it induces cellular senescence and is strongly implicated in GBM progression and RT-related injury. Recently, eliminating senescent cells has emerged as a promising strategy for treating cancer and for mitigating radiation-induced brain injury (RBI). Here, we investigated the impact of all-trans retinoic acid (RA) on radiation-induced senescence. The findings of this study revealed that RA effectively eliminated astrocytes, which are particularly prone to senescence after radiation, and that the removal of senescence-associated secretory phenotype factor-producing astrocytes inhibited GBM cell proliferation in vitro. Moreover, RA-mediated clearance of senescent cells improved survival in GBM-bearing mice and alleviated radiation-induced cognitive impairment. Through RNA sequencing, we found that the AKT/mTOR/PPARγ/Plin4 signaling pathway is involved in RA-mediated clearance of senescent cells. In summary, these results suggest that RA could be a potential senolytic drug for preventing GBM progression and improving RBI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
期刊最新文献
Dysregulation of RAS proteostasis by autosomal-dominant LZTR1 mutation induces Noonan syndrome-like phenotypes in mice. Disruption of mitochondrial electron transport impairs urinary concentration via AMPK-dependent suppression of aquaporin 2. Effects of SIPA1L1 on trabecular meshwork extracellular matrix protein accumulation and cellular phagocytosis in POAG. Neutrophils in nasal polyps exhibit transcriptional adaptation and proinflammatory roles that depend on local polyp milieu. Dynamic transition of Tregs to cytotoxic phenotype amid systemic inflammation in Graves' ophthalmopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1