Meric Erikci Ertunc, Srihari Konduri, Zhichen Ma, Antonio F M Pinto, Cynthia J Donaldson, Jeremiah Momper, Dionicio Siegel, Alan Saghatelian
{"title":"急性炎症会上调脂肪组织和共培养脂肪细胞中的 FAHFAs。","authors":"Meric Erikci Ertunc, Srihari Konduri, Zhichen Ma, Antonio F M Pinto, Cynthia J Donaldson, Jeremiah Momper, Dionicio Siegel, Alan Saghatelian","doi":"10.1016/j.jbc.2024.107972","DOIUrl":null,"url":null,"abstract":"<p><p>Since the discovery of fatty acid hydroxy fatty acids (FAHFAs), significant progress has been made in understanding their regulation, biochemistry, and physiological activities. Here, we contribute to this understanding by revealing that inflammation induces the production of fatty acid hydroxy stearic acids (FAHSAs) and fatty acid hydroxyoctadecadienoic acids (FAHODEs) in white adipose tissue depots and in adipocytes co-cultured with macrophages. In LPS-induced co-culture systems, we confirm that adipose triglyceride lipase (ATGL) is required for inflammation-induced FAHFA generation and demonstrate that inflammation is necessary for producing hydroxy fatty acids. Chemically synthesized FAHODEs show anti-inflammatory activities in vivo, but only at supraphysiological concentrations. While endogenous FAHFAs are unlikely to be anti-inflammatory due to their low concentrations, conversion of pro-inflammatory hydroxy fatty acids into FAHFAs may modulate inflammation. We test this concept by showing the pro-inflammatory lipids-hydroxyeicosatetraenoic acids (HETEs) and leukotriene B4 (LTB4)-are converted into FAHFAs in cell culture, and that two LTB4-derived FAHFAs have are modestly anti- not pro-inflammatory. Further research is needed to establish whether these increased FAFHA levels have a role in inflammation or are simply markers of inflammation, but the discovery of significant increases in FAHFA upon acute inflammation advances our knowledge of FAHFAs.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute inflammation upregulates FAHFAs in adipose tissue and in co-cultured adipocytes.\",\"authors\":\"Meric Erikci Ertunc, Srihari Konduri, Zhichen Ma, Antonio F M Pinto, Cynthia J Donaldson, Jeremiah Momper, Dionicio Siegel, Alan Saghatelian\",\"doi\":\"10.1016/j.jbc.2024.107972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the discovery of fatty acid hydroxy fatty acids (FAHFAs), significant progress has been made in understanding their regulation, biochemistry, and physiological activities. Here, we contribute to this understanding by revealing that inflammation induces the production of fatty acid hydroxy stearic acids (FAHSAs) and fatty acid hydroxyoctadecadienoic acids (FAHODEs) in white adipose tissue depots and in adipocytes co-cultured with macrophages. In LPS-induced co-culture systems, we confirm that adipose triglyceride lipase (ATGL) is required for inflammation-induced FAHFA generation and demonstrate that inflammation is necessary for producing hydroxy fatty acids. Chemically synthesized FAHODEs show anti-inflammatory activities in vivo, but only at supraphysiological concentrations. While endogenous FAHFAs are unlikely to be anti-inflammatory due to their low concentrations, conversion of pro-inflammatory hydroxy fatty acids into FAHFAs may modulate inflammation. We test this concept by showing the pro-inflammatory lipids-hydroxyeicosatetraenoic acids (HETEs) and leukotriene B4 (LTB4)-are converted into FAHFAs in cell culture, and that two LTB4-derived FAHFAs have are modestly anti- not pro-inflammatory. Further research is needed to establish whether these increased FAFHA levels have a role in inflammation or are simply markers of inflammation, but the discovery of significant increases in FAHFA upon acute inflammation advances our knowledge of FAHFAs.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2024.107972\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107972","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Acute inflammation upregulates FAHFAs in adipose tissue and in co-cultured adipocytes.
Since the discovery of fatty acid hydroxy fatty acids (FAHFAs), significant progress has been made in understanding their regulation, biochemistry, and physiological activities. Here, we contribute to this understanding by revealing that inflammation induces the production of fatty acid hydroxy stearic acids (FAHSAs) and fatty acid hydroxyoctadecadienoic acids (FAHODEs) in white adipose tissue depots and in adipocytes co-cultured with macrophages. In LPS-induced co-culture systems, we confirm that adipose triglyceride lipase (ATGL) is required for inflammation-induced FAHFA generation and demonstrate that inflammation is necessary for producing hydroxy fatty acids. Chemically synthesized FAHODEs show anti-inflammatory activities in vivo, but only at supraphysiological concentrations. While endogenous FAHFAs are unlikely to be anti-inflammatory due to their low concentrations, conversion of pro-inflammatory hydroxy fatty acids into FAHFAs may modulate inflammation. We test this concept by showing the pro-inflammatory lipids-hydroxyeicosatetraenoic acids (HETEs) and leukotriene B4 (LTB4)-are converted into FAHFAs in cell culture, and that two LTB4-derived FAHFAs have are modestly anti- not pro-inflammatory. Further research is needed to establish whether these increased FAFHA levels have a role in inflammation or are simply markers of inflammation, but the discovery of significant increases in FAHFA upon acute inflammation advances our knowledge of FAHFAs.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.