{"title":"用于控制李斯特菌属的含抗菌纳米粒子的食品包装薄膜:综述。","authors":"Marcia Cristina Furlaneto , Luciana Furlaneto-Maia","doi":"10.1016/j.ijfoodmicro.2024.110959","DOIUrl":null,"url":null,"abstract":"<div><div>Bacteria of the genus <em>Listeria</em> are ubiquitous in nature and are found in various food products and food processing facilities. The species <em>Listeria monocytogenes</em> is a food-borne pathogen that causes listeriosis with a high fatality rate. For the prevention and control of listeriosis, the identification of effective antilisterial compounds is desirable. The number of investigations on nanoparticles (NPs) with antimicrobial activity has increased in recent years. In this context, green nanotechnology is a field of science that focuses on the synthesis of NPs through biological pathways using a wide range of microorganisms and plant extracts, which has led to the biofabrication of novel antimicrobial agents that have demonstrated remarkable potential against pathogenic bacteria. In this review, in vitro studies of the inhibitory action of antimicrobial NPs obtained by green biosynthesis, including silver, gold, zinc, zinc oxide, copper, palladium, and selenium NPs, on the growth of <em>Listeria</em> spp. were comprehensively summarized. This review mainly highlights antimicrobial NPs in biopolymer films against <em>L. monocytogenes</em>. Furthermore, studies on NPs in biopolymer-based functional food packaging films against <em>L. monocytogenes</em> are listed. Finally, safety considerations are indicated. This review provides an overview of the antilisterial activity of bio-based antimicrobial NPs and the potential of nanotechnology as an innovative technology for the development of food packaging films containing antimicrobial NPs to control <em>Listeria</em> spp.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"427 ","pages":"Article 110959"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial nanoparticle-containing food packaging films for controlling Listeria spp.: An overview\",\"authors\":\"Marcia Cristina Furlaneto , Luciana Furlaneto-Maia\",\"doi\":\"10.1016/j.ijfoodmicro.2024.110959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacteria of the genus <em>Listeria</em> are ubiquitous in nature and are found in various food products and food processing facilities. The species <em>Listeria monocytogenes</em> is a food-borne pathogen that causes listeriosis with a high fatality rate. For the prevention and control of listeriosis, the identification of effective antilisterial compounds is desirable. The number of investigations on nanoparticles (NPs) with antimicrobial activity has increased in recent years. In this context, green nanotechnology is a field of science that focuses on the synthesis of NPs through biological pathways using a wide range of microorganisms and plant extracts, which has led to the biofabrication of novel antimicrobial agents that have demonstrated remarkable potential against pathogenic bacteria. In this review, in vitro studies of the inhibitory action of antimicrobial NPs obtained by green biosynthesis, including silver, gold, zinc, zinc oxide, copper, palladium, and selenium NPs, on the growth of <em>Listeria</em> spp. were comprehensively summarized. This review mainly highlights antimicrobial NPs in biopolymer films against <em>L. monocytogenes</em>. Furthermore, studies on NPs in biopolymer-based functional food packaging films against <em>L. monocytogenes</em> are listed. Finally, safety considerations are indicated. This review provides an overview of the antilisterial activity of bio-based antimicrobial NPs and the potential of nanotechnology as an innovative technology for the development of food packaging films containing antimicrobial NPs to control <em>Listeria</em> spp.</div></div>\",\"PeriodicalId\":14095,\"journal\":{\"name\":\"International journal of food microbiology\",\"volume\":\"427 \",\"pages\":\"Article 110959\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168160524004033\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160524004033","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Antimicrobial nanoparticle-containing food packaging films for controlling Listeria spp.: An overview
Bacteria of the genus Listeria are ubiquitous in nature and are found in various food products and food processing facilities. The species Listeria monocytogenes is a food-borne pathogen that causes listeriosis with a high fatality rate. For the prevention and control of listeriosis, the identification of effective antilisterial compounds is desirable. The number of investigations on nanoparticles (NPs) with antimicrobial activity has increased in recent years. In this context, green nanotechnology is a field of science that focuses on the synthesis of NPs through biological pathways using a wide range of microorganisms and plant extracts, which has led to the biofabrication of novel antimicrobial agents that have demonstrated remarkable potential against pathogenic bacteria. In this review, in vitro studies of the inhibitory action of antimicrobial NPs obtained by green biosynthesis, including silver, gold, zinc, zinc oxide, copper, palladium, and selenium NPs, on the growth of Listeria spp. were comprehensively summarized. This review mainly highlights antimicrobial NPs in biopolymer films against L. monocytogenes. Furthermore, studies on NPs in biopolymer-based functional food packaging films against L. monocytogenes are listed. Finally, safety considerations are indicated. This review provides an overview of the antilisterial activity of bio-based antimicrobial NPs and the potential of nanotechnology as an innovative technology for the development of food packaging films containing antimicrobial NPs to control Listeria spp.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.