Emily M King, Yifan Zhao, Camille M Moore, Benjamin Steinhart, Kelsey C Anderson, Brian Vestal, Peter K Moore, Shannon A McManus, Christopher M Evans, Kara J Mould, Elizabeth F Redente, Alexandra L McCubbrey, William J Janssen
{"title":"Gpnmb 和 Spp1 标志着一种保守的巨噬细胞损伤反应,掩盖了肺纤维化特异性程序。","authors":"Emily M King, Yifan Zhao, Camille M Moore, Benjamin Steinhart, Kelsey C Anderson, Brian Vestal, Peter K Moore, Shannon A McManus, Christopher M Evans, Kara J Mould, Elizabeth F Redente, Alexandra L McCubbrey, William J Janssen","doi":"10.1172/jci.insight.182700","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are required for healthy repair of the lungs following injury, but they are also implicated in driving dysregulated repair with fibrosis. How these two distinct outcomes of lung injury are mediated by different macrophage subsets is unknown. To assess this, single-cell RNA sequencing was performed on lung macrophages isolated from mice treated with lipopolysaccharide or bleomycin. Macrophages were categorized based on anatomic location (airspace versus interstitium), developmental origin (embryonic versus recruited monocyte-derived), time after inflammatory challenge, and injury model. Analysis of the integrated dataset revealed that macrophage subset clustering was driven by macrophage origin and tissue compartment rather than injury model. Gpnmb-expressing recruited macrophages that were enriched for genes typically associated with fibrosis were present in both injury models. Analogous GPNMB-expressing macrophages were identified in datasets from both fibrotic and non-fibrotic lung disease in humans. We conclude that this subset represents a conserved response to tissue injury and is not sufficient to drive fibrosis. Beyond this conserved response, we identified that recruited macrophages failed to gain resident-like programming during fibrotic repair. Overall, fibrotic versus non-fibrotic tissue repair is dictated by dynamic shifts in macrophage subset programming and persistence of recruited macrophages.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gpnmb and Spp1 mark a conserved macrophage injury response masking fibrosis-specific programming in the lung.\",\"authors\":\"Emily M King, Yifan Zhao, Camille M Moore, Benjamin Steinhart, Kelsey C Anderson, Brian Vestal, Peter K Moore, Shannon A McManus, Christopher M Evans, Kara J Mould, Elizabeth F Redente, Alexandra L McCubbrey, William J Janssen\",\"doi\":\"10.1172/jci.insight.182700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages are required for healthy repair of the lungs following injury, but they are also implicated in driving dysregulated repair with fibrosis. How these two distinct outcomes of lung injury are mediated by different macrophage subsets is unknown. To assess this, single-cell RNA sequencing was performed on lung macrophages isolated from mice treated with lipopolysaccharide or bleomycin. Macrophages were categorized based on anatomic location (airspace versus interstitium), developmental origin (embryonic versus recruited monocyte-derived), time after inflammatory challenge, and injury model. Analysis of the integrated dataset revealed that macrophage subset clustering was driven by macrophage origin and tissue compartment rather than injury model. Gpnmb-expressing recruited macrophages that were enriched for genes typically associated with fibrosis were present in both injury models. Analogous GPNMB-expressing macrophages were identified in datasets from both fibrotic and non-fibrotic lung disease in humans. We conclude that this subset represents a conserved response to tissue injury and is not sufficient to drive fibrosis. Beyond this conserved response, we identified that recruited macrophages failed to gain resident-like programming during fibrotic repair. Overall, fibrotic versus non-fibrotic tissue repair is dictated by dynamic shifts in macrophage subset programming and persistence of recruited macrophages.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.182700\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.182700","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Gpnmb and Spp1 mark a conserved macrophage injury response masking fibrosis-specific programming in the lung.
Macrophages are required for healthy repair of the lungs following injury, but they are also implicated in driving dysregulated repair with fibrosis. How these two distinct outcomes of lung injury are mediated by different macrophage subsets is unknown. To assess this, single-cell RNA sequencing was performed on lung macrophages isolated from mice treated with lipopolysaccharide or bleomycin. Macrophages were categorized based on anatomic location (airspace versus interstitium), developmental origin (embryonic versus recruited monocyte-derived), time after inflammatory challenge, and injury model. Analysis of the integrated dataset revealed that macrophage subset clustering was driven by macrophage origin and tissue compartment rather than injury model. Gpnmb-expressing recruited macrophages that were enriched for genes typically associated with fibrosis were present in both injury models. Analogous GPNMB-expressing macrophages were identified in datasets from both fibrotic and non-fibrotic lung disease in humans. We conclude that this subset represents a conserved response to tissue injury and is not sufficient to drive fibrosis. Beyond this conserved response, we identified that recruited macrophages failed to gain resident-like programming during fibrotic repair. Overall, fibrotic versus non-fibrotic tissue repair is dictated by dynamic shifts in macrophage subset programming and persistence of recruited macrophages.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.