{"title":"神经元中α-突触核蛋白的表达可调节日本脑炎病毒感染。","authors":"Anjali Gupta, Vijay Singh Bohara, Aditya Singh Chauhan, Anshuman Mohapatra, Harpreet Kaur, Ajanta Sharma, Nitin Chaudhary, Sachin Kumar","doi":"10.1128/jvi.00418-24","DOIUrl":null,"url":null,"abstract":"<p><p>Japanese encephalitis virus (JEV) stands as a prominent vector-borne zoonotic pathogen, displaying neurotropism and eliciting Parkinson's disease (PD)-like symptoms among most symptomatic survivors. A characteristic feature of PD is the aggregation of mutated α-synuclein (α-syn) that damages the dopaminergic neurons. Considering this link between JEV-induced PD-like symptoms and α-syn pathogenesis, we explored the role of α-syn in JEV infectivity in neuronal cells. Our investigation revealed a significant increase in endogenous α-syn expression in JEV-infected cells. In addition, exogenous α-syn (Exoα-syn) treatment substantially reduced JEV replication, suggesting its anti-JEV effect. Furthermore, Exoα-syn treatment led to the upregulation of superoxide dismutase 1 (SOD1) and reduction in reactive oxygen species (ROS). The results were validated by endogenous α-syn-silencing, which decreased SOD1 and raised ROS levels in neuronal cells. Similarly, the SOD1 inhibition <i>via</i> LCS-1 also intensified ROS and JEV infection. Silencing of SOD1 in α-syn overexpressing neuro2a cells exhibited increased JEV replication. Overall, our results suggest that α-syn exerts an anti-JEV effect by regulating protein involved in oxidative stress inside neuronal cells. This study contributes valuable insights into the interplay between α-syn expression and JEV infectivity, shedding light on avenues further to investigate the potential role of α-syn in JEV pathogenesis.</p><p><strong>Importance: </strong>Japanese encephalitis virus (JEV) poses a significant threat, particularly to children. Despite extensive research efforts, the development of effective treatments against JEV has been impeded. One of the major setbacks is a lack of comprehensive understanding of neurotropism. The study focuses on alpha-synuclein (α-syn), a neuronal protein, and aims to determine its role in JEV pathogenesis. The present study reveals that the host cell upregulates α-syn in response to JEV infection. α-syn restrains JEV propagation by modulating superoxide dismutase 1 (SOD1) expression which further blocks JEV-induced ROS generation. Endogenous α-syn silencing led to a decrease in SOD1 expression and increased viral titer. α-syn plays a crucial role in counteracting oxidative stress through SOD1, which is essential for limiting JEV replication. This study provides broader implications for antiviral strategies and their possible role in neurodegenerative diseases; however, there is still much to explore, particularly regarding α-syn aggregation kinetics in JEV infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0041824"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alpha-synuclein expression in neurons modulates Japanese encephalitis virus infection.\",\"authors\":\"Anjali Gupta, Vijay Singh Bohara, Aditya Singh Chauhan, Anshuman Mohapatra, Harpreet Kaur, Ajanta Sharma, Nitin Chaudhary, Sachin Kumar\",\"doi\":\"10.1128/jvi.00418-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Japanese encephalitis virus (JEV) stands as a prominent vector-borne zoonotic pathogen, displaying neurotropism and eliciting Parkinson's disease (PD)-like symptoms among most symptomatic survivors. A characteristic feature of PD is the aggregation of mutated α-synuclein (α-syn) that damages the dopaminergic neurons. Considering this link between JEV-induced PD-like symptoms and α-syn pathogenesis, we explored the role of α-syn in JEV infectivity in neuronal cells. Our investigation revealed a significant increase in endogenous α-syn expression in JEV-infected cells. In addition, exogenous α-syn (Exoα-syn) treatment substantially reduced JEV replication, suggesting its anti-JEV effect. Furthermore, Exoα-syn treatment led to the upregulation of superoxide dismutase 1 (SOD1) and reduction in reactive oxygen species (ROS). The results were validated by endogenous α-syn-silencing, which decreased SOD1 and raised ROS levels in neuronal cells. Similarly, the SOD1 inhibition <i>via</i> LCS-1 also intensified ROS and JEV infection. Silencing of SOD1 in α-syn overexpressing neuro2a cells exhibited increased JEV replication. Overall, our results suggest that α-syn exerts an anti-JEV effect by regulating protein involved in oxidative stress inside neuronal cells. This study contributes valuable insights into the interplay between α-syn expression and JEV infectivity, shedding light on avenues further to investigate the potential role of α-syn in JEV pathogenesis.</p><p><strong>Importance: </strong>Japanese encephalitis virus (JEV) poses a significant threat, particularly to children. Despite extensive research efforts, the development of effective treatments against JEV has been impeded. One of the major setbacks is a lack of comprehensive understanding of neurotropism. The study focuses on alpha-synuclein (α-syn), a neuronal protein, and aims to determine its role in JEV pathogenesis. The present study reveals that the host cell upregulates α-syn in response to JEV infection. α-syn restrains JEV propagation by modulating superoxide dismutase 1 (SOD1) expression which further blocks JEV-induced ROS generation. Endogenous α-syn silencing led to a decrease in SOD1 expression and increased viral titer. α-syn plays a crucial role in counteracting oxidative stress through SOD1, which is essential for limiting JEV replication. This study provides broader implications for antiviral strategies and their possible role in neurodegenerative diseases; however, there is still much to explore, particularly regarding α-syn aggregation kinetics in JEV infection.</p>\",\"PeriodicalId\":17583,\"journal\":{\"name\":\"Journal of Virology\",\"volume\":\" \",\"pages\":\"e0041824\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jvi.00418-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00418-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Alpha-synuclein expression in neurons modulates Japanese encephalitis virus infection.
Japanese encephalitis virus (JEV) stands as a prominent vector-borne zoonotic pathogen, displaying neurotropism and eliciting Parkinson's disease (PD)-like symptoms among most symptomatic survivors. A characteristic feature of PD is the aggregation of mutated α-synuclein (α-syn) that damages the dopaminergic neurons. Considering this link between JEV-induced PD-like symptoms and α-syn pathogenesis, we explored the role of α-syn in JEV infectivity in neuronal cells. Our investigation revealed a significant increase in endogenous α-syn expression in JEV-infected cells. In addition, exogenous α-syn (Exoα-syn) treatment substantially reduced JEV replication, suggesting its anti-JEV effect. Furthermore, Exoα-syn treatment led to the upregulation of superoxide dismutase 1 (SOD1) and reduction in reactive oxygen species (ROS). The results were validated by endogenous α-syn-silencing, which decreased SOD1 and raised ROS levels in neuronal cells. Similarly, the SOD1 inhibition via LCS-1 also intensified ROS and JEV infection. Silencing of SOD1 in α-syn overexpressing neuro2a cells exhibited increased JEV replication. Overall, our results suggest that α-syn exerts an anti-JEV effect by regulating protein involved in oxidative stress inside neuronal cells. This study contributes valuable insights into the interplay between α-syn expression and JEV infectivity, shedding light on avenues further to investigate the potential role of α-syn in JEV pathogenesis.
Importance: Japanese encephalitis virus (JEV) poses a significant threat, particularly to children. Despite extensive research efforts, the development of effective treatments against JEV has been impeded. One of the major setbacks is a lack of comprehensive understanding of neurotropism. The study focuses on alpha-synuclein (α-syn), a neuronal protein, and aims to determine its role in JEV pathogenesis. The present study reveals that the host cell upregulates α-syn in response to JEV infection. α-syn restrains JEV propagation by modulating superoxide dismutase 1 (SOD1) expression which further blocks JEV-induced ROS generation. Endogenous α-syn silencing led to a decrease in SOD1 expression and increased viral titer. α-syn plays a crucial role in counteracting oxidative stress through SOD1, which is essential for limiting JEV replication. This study provides broader implications for antiviral strategies and their possible role in neurodegenerative diseases; however, there is still much to explore, particularly regarding α-syn aggregation kinetics in JEV infection.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.