验证优化碳离子放射治疗的线性能量传递。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-11-07 DOI:10.1088/1361-6560/ad8fec
Hideyuki Mizuno, Taku Nakaji, Sung Hyun Lee, Dousatsu Sakata, Katsumi Aoki, Kota Mizushima, Linh Tran, Anatoly B Rosenfeld, Taku Inaniwa
{"title":"验证优化碳离子放射治疗的线性能量传递。","authors":"Hideyuki Mizuno, Taku Nakaji, Sung Hyun Lee, Dousatsu Sakata, Katsumi Aoki, Kota Mizushima, Linh Tran, Anatoly B Rosenfeld, Taku Inaniwa","doi":"10.1088/1361-6560/ad8fec","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Linear energy transfer (LET) verification was conducted using a silicon-on-insulator (SOI) microdosimeter during the commissioning of LET-optimized carbon-ion radiotherapy. This advanced treatment technique is expected to improve local control rates, especially in hypoxic tumors. &#xD;Approach: An SOI microdosimeter with a cylindrical sensitive volume of 30 μm diameter and 5 μm thickness was used. Simple cubic plans and patient plans using the carbon-ion beams were created by treatment planning system, and the calculated LETd values were compared with the measured LETd values obtained by the SOI microdosimeter. &#xD;Main results: Reasonable agreement between the measured and calculated LETd was seen in the plateau region of depth LETd profile, whereas the measured LETd were below the calculated LETd in the peak region, specifically where LETd exceeds 75 keV/μm. The discrepancy in the peak region may arise from the uncertainties in the calibration process of the SOI microdosimeter. Excluding the peak region, the average ratio and standard deviation between measured and calculated LETd values were 0.996 and 7%, respectively. &#xD;Significance: This verification results in the initiation of clinical trials for LET-optimized carbon-ion radiotherapy at QST Hospital, National Institutes for Quantum Science and Technology.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of linear energy transfer optimized carbon-ion radiotherapy.\",\"authors\":\"Hideyuki Mizuno, Taku Nakaji, Sung Hyun Lee, Dousatsu Sakata, Katsumi Aoki, Kota Mizushima, Linh Tran, Anatoly B Rosenfeld, Taku Inaniwa\",\"doi\":\"10.1088/1361-6560/ad8fec\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Linear energy transfer (LET) verification was conducted using a silicon-on-insulator (SOI) microdosimeter during the commissioning of LET-optimized carbon-ion radiotherapy. This advanced treatment technique is expected to improve local control rates, especially in hypoxic tumors. &#xD;Approach: An SOI microdosimeter with a cylindrical sensitive volume of 30 μm diameter and 5 μm thickness was used. Simple cubic plans and patient plans using the carbon-ion beams were created by treatment planning system, and the calculated LETd values were compared with the measured LETd values obtained by the SOI microdosimeter. &#xD;Main results: Reasonable agreement between the measured and calculated LETd was seen in the plateau region of depth LETd profile, whereas the measured LETd were below the calculated LETd in the peak region, specifically where LETd exceeds 75 keV/μm. The discrepancy in the peak region may arise from the uncertainties in the calibration process of the SOI microdosimeter. Excluding the peak region, the average ratio and standard deviation between measured and calculated LETd values were 0.996 and 7%, respectively. &#xD;Significance: This verification results in the initiation of clinical trials for LET-optimized carbon-ion radiotherapy at QST Hospital, National Institutes for Quantum Science and Technology.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ad8fec\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad8fec","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:在 LET 优化碳离子放射治疗的调试过程中,使用硅绝缘体(SOI)微剂量计进行了线性能量传递(LET)验证。这种先进的治疗技术有望提高局部控制率,尤其是对缺氧性肿瘤:使用了一个直径为 30 微米、厚度为 5 微米的圆柱形敏感体积 SOI 微剂量计。通过治疗计划系统创建简单的立方体计划和使用碳离子束的患者计划,并将计算出的 LETd 值与 SOI 微透镜测量出的 LETd 值进行比较:在 LETd 深度剖面的高原区,测量值与计算值基本一致,而在峰值区,特别是 LETd 超过 75 keV/μm 的地方,测量值低于计算值。峰值区域的差异可能是 SOI 微探针校准过程中的不确定性造成的。除去峰值区域,LETd 测量值和计算值的平均比值和标准偏差分别为 0.996 和 7%:通过此次验证,国家量子科学与技术研究所 QST 医院将启动 LET 优化碳离子放射治疗的临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verification of linear energy transfer optimized carbon-ion radiotherapy.

Objective: Linear energy transfer (LET) verification was conducted using a silicon-on-insulator (SOI) microdosimeter during the commissioning of LET-optimized carbon-ion radiotherapy. This advanced treatment technique is expected to improve local control rates, especially in hypoxic tumors. Approach: An SOI microdosimeter with a cylindrical sensitive volume of 30 μm diameter and 5 μm thickness was used. Simple cubic plans and patient plans using the carbon-ion beams were created by treatment planning system, and the calculated LETd values were compared with the measured LETd values obtained by the SOI microdosimeter. Main results: Reasonable agreement between the measured and calculated LETd was seen in the plateau region of depth LETd profile, whereas the measured LETd were below the calculated LETd in the peak region, specifically where LETd exceeds 75 keV/μm. The discrepancy in the peak region may arise from the uncertainties in the calibration process of the SOI microdosimeter. Excluding the peak region, the average ratio and standard deviation between measured and calculated LETd values were 0.996 and 7%, respectively. Significance: This verification results in the initiation of clinical trials for LET-optimized carbon-ion radiotherapy at QST Hospital, National Institutes for Quantum Science and Technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Automated planning of curved needle channels in 3D printed patient-tailored applicators for cervical cancer brachytherapy. Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study. Novel frequency selective B1focusing passive Lenz resonators for substantial MRI signal-to-noise ratio amplification. On the microdosimetric characterisation of the radiation quality of a carbon-ion beam and the effect of the target volume thickness. Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1