Yihao Liu, Junyu Chen, Lianrui Zuo, Aaron Carass, Jerry L Prince
{"title":"用于可变形图像配准的矢量场关注。","authors":"Yihao Liu, Junyu Chen, Lianrui Zuo, Aaron Carass, Jerry L Prince","doi":"10.1117/1.JMI.11.6.064001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Deformable image registration establishes non-linear spatial correspondences between fixed and moving images. Deep learning-based deformable registration methods have been widely studied in recent years due to their speed advantage over traditional algorithms as well as their better accuracy. Most existing deep learning-based methods require neural networks to encode location information in their feature maps and predict displacement or deformation fields through convolutional or fully connected layers from these high-dimensional feature maps. We present vector field attention (VFA), a novel framework that enhances the efficiency of the existing network design by enabling direct retrieval of location correspondences.</p><p><strong>Approach: </strong>VFA uses neural networks to extract multi-resolution feature maps from the fixed and moving images and then retrieves pixel-level correspondences based on feature similarity. The retrieval is achieved with a novel attention module without the need for learnable parameters. VFA is trained end-to-end in either a supervised or unsupervised manner.</p><p><strong>Results: </strong>We evaluated VFA for intra- and inter-modality registration and unsupervised and semi-supervised registration using public datasets as well as the Learn2Reg challenge. VFA demonstrated comparable or superior registration accuracy compared with several state-of-the-art methods.</p><p><strong>Conclusions: </strong>VFA offers a novel approach to deformable image registration by directly retrieving spatial correspondences from feature maps, leading to improved performance in registration tasks. It holds potential for broader applications.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 6","pages":"064001"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540117/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vector field attention for deformable image registration.\",\"authors\":\"Yihao Liu, Junyu Chen, Lianrui Zuo, Aaron Carass, Jerry L Prince\",\"doi\":\"10.1117/1.JMI.11.6.064001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Deformable image registration establishes non-linear spatial correspondences between fixed and moving images. Deep learning-based deformable registration methods have been widely studied in recent years due to their speed advantage over traditional algorithms as well as their better accuracy. Most existing deep learning-based methods require neural networks to encode location information in their feature maps and predict displacement or deformation fields through convolutional or fully connected layers from these high-dimensional feature maps. We present vector field attention (VFA), a novel framework that enhances the efficiency of the existing network design by enabling direct retrieval of location correspondences.</p><p><strong>Approach: </strong>VFA uses neural networks to extract multi-resolution feature maps from the fixed and moving images and then retrieves pixel-level correspondences based on feature similarity. The retrieval is achieved with a novel attention module without the need for learnable parameters. VFA is trained end-to-end in either a supervised or unsupervised manner.</p><p><strong>Results: </strong>We evaluated VFA for intra- and inter-modality registration and unsupervised and semi-supervised registration using public datasets as well as the Learn2Reg challenge. VFA demonstrated comparable or superior registration accuracy compared with several state-of-the-art methods.</p><p><strong>Conclusions: </strong>VFA offers a novel approach to deformable image registration by directly retrieving spatial correspondences from feature maps, leading to improved performance in registration tasks. It holds potential for broader applications.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"11 6\",\"pages\":\"064001\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540117/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.6.064001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.6.064001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Vector field attention for deformable image registration.
Purpose: Deformable image registration establishes non-linear spatial correspondences between fixed and moving images. Deep learning-based deformable registration methods have been widely studied in recent years due to their speed advantage over traditional algorithms as well as their better accuracy. Most existing deep learning-based methods require neural networks to encode location information in their feature maps and predict displacement or deformation fields through convolutional or fully connected layers from these high-dimensional feature maps. We present vector field attention (VFA), a novel framework that enhances the efficiency of the existing network design by enabling direct retrieval of location correspondences.
Approach: VFA uses neural networks to extract multi-resolution feature maps from the fixed and moving images and then retrieves pixel-level correspondences based on feature similarity. The retrieval is achieved with a novel attention module without the need for learnable parameters. VFA is trained end-to-end in either a supervised or unsupervised manner.
Results: We evaluated VFA for intra- and inter-modality registration and unsupervised and semi-supervised registration using public datasets as well as the Learn2Reg challenge. VFA demonstrated comparable or superior registration accuracy compared with several state-of-the-art methods.
Conclusions: VFA offers a novel approach to deformable image registration by directly retrieving spatial correspondences from feature maps, leading to improved performance in registration tasks. It holds potential for broader applications.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.