{"title":"用于动态系统的精确保守物理信息神经网络和深度算子网络。","authors":"Elsa Cardoso-Bihlo, Alex Bihlo","doi":"10.1016/j.neunet.2024.106826","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a method for training exactly conservative physics-informed neural networks and physics-informed deep operator networks for dynamical systems, that is, for ordinary differential equations. The method employs a projection-based technique that maps a candidate solution learned by the neural network solver for any given dynamical system possessing at least one first integral onto an invariant manifold. We illustrate that exactly conservative physics-informed neural network solvers and physics-informed deep operator networks for dynamical systems vastly outperform their non-conservative counterparts for several real-world problems from the mathematical sciences.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106826"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exactly conservative physics-informed neural networks and deep operator networks for dynamical systems\",\"authors\":\"Elsa Cardoso-Bihlo, Alex Bihlo\",\"doi\":\"10.1016/j.neunet.2024.106826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a method for training exactly conservative physics-informed neural networks and physics-informed deep operator networks for dynamical systems, that is, for ordinary differential equations. The method employs a projection-based technique that maps a candidate solution learned by the neural network solver for any given dynamical system possessing at least one first integral onto an invariant manifold. We illustrate that exactly conservative physics-informed neural network solvers and physics-informed deep operator networks for dynamical systems vastly outperform their non-conservative counterparts for several real-world problems from the mathematical sciences.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"181 \",\"pages\":\"Article 106826\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024007500\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024007500","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Exactly conservative physics-informed neural networks and deep operator networks for dynamical systems
We introduce a method for training exactly conservative physics-informed neural networks and physics-informed deep operator networks for dynamical systems, that is, for ordinary differential equations. The method employs a projection-based technique that maps a candidate solution learned by the neural network solver for any given dynamical system possessing at least one first integral onto an invariant manifold. We illustrate that exactly conservative physics-informed neural network solvers and physics-informed deep operator networks for dynamical systems vastly outperform their non-conservative counterparts for several real-world problems from the mathematical sciences.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.