为深度强化学习提供具有规模化人类偏好反馈的离线奖励塑造。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-11-01 DOI:10.1016/j.neunet.2024.106848
Jinfeng Li, Biao Luo, Xiaodong Xu, Tingwen Huang
{"title":"为深度强化学习提供具有规模化人类偏好反馈的离线奖励塑造。","authors":"Jinfeng Li,&nbsp;Biao Luo,&nbsp;Xiaodong Xu,&nbsp;Tingwen Huang","doi":"10.1016/j.neunet.2024.106848","DOIUrl":null,"url":null,"abstract":"<div><div>Designing reward functions that fully align with human intent is often challenging. Preference-based Reinforcement Learning (PbRL) provides a framework where humans can select preferred segments through pairwise comparisons of behavior trajectory segments, facilitating reward function learning. However, existing methods collect non-dynamic preferences and struggle to provide accurate information about preference intensity. We propose scaling preference (SP) feedback method and qualitative and quantitative scaling preference (Q2SP) feedback method, which allow humans to express the true degree of preference between trajectories, thus helping reward learn more accurate human preferences from offline data. Our key insight is that more detailed feedback facilitates the learning of reward functions that better align with human intent. Experiments demonstrate that, across a range of control and robotic benchmark tasks, our methods are highly competitive compared to baselines and state of the art approaches.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106848"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offline reward shaping with scaling human preference feedback for deep reinforcement learning\",\"authors\":\"Jinfeng Li,&nbsp;Biao Luo,&nbsp;Xiaodong Xu,&nbsp;Tingwen Huang\",\"doi\":\"10.1016/j.neunet.2024.106848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing reward functions that fully align with human intent is often challenging. Preference-based Reinforcement Learning (PbRL) provides a framework where humans can select preferred segments through pairwise comparisons of behavior trajectory segments, facilitating reward function learning. However, existing methods collect non-dynamic preferences and struggle to provide accurate information about preference intensity. We propose scaling preference (SP) feedback method and qualitative and quantitative scaling preference (Q2SP) feedback method, which allow humans to express the true degree of preference between trajectories, thus helping reward learn more accurate human preferences from offline data. Our key insight is that more detailed feedback facilitates the learning of reward functions that better align with human intent. Experiments demonstrate that, across a range of control and robotic benchmark tasks, our methods are highly competitive compared to baselines and state of the art approaches.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"181 \",\"pages\":\"Article 106848\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089360802400772X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089360802400772X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

设计完全符合人类意图的奖励功能往往具有挑战性。基于偏好的强化学习(PbRL)提供了一个框架,人类可以通过对行为轨迹片段进行成对比较来选择偏好的片段,从而促进奖励函数的学习。然而,现有方法收集的是非动态偏好,难以提供有关偏好强度的准确信息。我们提出了比例偏好(SP)反馈法和定性定量比例偏好(Q2SP)反馈法,它们允许人类表达轨迹之间的真实偏好程度,从而帮助奖励从离线数据中学习到更准确的人类偏好。我们的主要见解是,更详细的反馈有助于学习更符合人类意图的奖励函数。实验证明,在一系列控制和机器人基准任务中,我们的方法与基线和最先进的方法相比具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Offline reward shaping with scaling human preference feedback for deep reinforcement learning
Designing reward functions that fully align with human intent is often challenging. Preference-based Reinforcement Learning (PbRL) provides a framework where humans can select preferred segments through pairwise comparisons of behavior trajectory segments, facilitating reward function learning. However, existing methods collect non-dynamic preferences and struggle to provide accurate information about preference intensity. We propose scaling preference (SP) feedback method and qualitative and quantitative scaling preference (Q2SP) feedback method, which allow humans to express the true degree of preference between trajectories, thus helping reward learn more accurate human preferences from offline data. Our key insight is that more detailed feedback facilitates the learning of reward functions that better align with human intent. Experiments demonstrate that, across a range of control and robotic benchmark tasks, our methods are highly competitive compared to baselines and state of the art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition. Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems. Corrigendum to "Multi-view Graph Pooling with Coarsened Graph Disentanglement" [Neural Networks 174 (2024) 1-10/106221]. Multi-compartment neuron and population encoding powered spiking neural network for deep distributional reinforcement learning. Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1