Heng Liu, Huanhuan Niu, Wei-Hsiang Huang, Ting Shen, Changyuan Li, Chun-Chi Chang, Menghao Yang, Chenlong Gao, Long Yang, Quan Zong, Yanzhong Pei, Guozhong Cao* and Chaofeng Liu*,
{"title":"揭示锌离子水电池有机阳离子预烧结钒酸盐阴极的局部结构和配体场","authors":"Heng Liu, Huanhuan Niu, Wei-Hsiang Huang, Ting Shen, Changyuan Li, Chun-Chi Chang, Menghao Yang, Chenlong Gao, Long Yang, Quan Zong, Yanzhong Pei, Guozhong Cao* and Chaofeng Liu*, ","doi":"10.1021/acsenergylett.4c0270910.1021/acsenergylett.4c02709","DOIUrl":null,"url":null,"abstract":"<p >Layered vanadium-based materials have been extensively studied as promising cathode materials for aqueous zinc-ion batteries (AZIBs). However, challenges remain to achieve the desired high energy conversion efficiency and energy densities as well as long cycling stability requiring an in-depth understanding of the local and the electronic structure of a vanadium-based cathode, especially concerning the impacts on electrochemical potential and mass transfer in the electrochemical process. In this work, 1-butyl-1-methylpyrrolidinium cations are preintercalated into the layered hydrate vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>·<i>n</i>H<sub>2</sub>O) and partially replace the electroneutral structural water, changing the local atomic environment. X-ray absorption spectroscopies demonstrate the V–O bond elongation and the distortion in the [VO<sub>6</sub>] octahedra, which alter the ligand field and brings the V 3<i>d</i> state to a lower energy level, ultimately leading to an increase in the electrochemical potential. It is also revealed that the preintercalated organic cations exert electrostatic interaction with lattice oxygen, stabilizing the layered structure and buffering lattice strain during cycling. Consequently, the modified cathode achieves a superior specific capacity of 412 mAh/g at 0.5 A/g and a capacity retention of 97% after 3000 cycles at 8 A/g. The unveiled correlation between local structure and electrochemical performance paves the way for optimizing the cathode materials by manipulating the local coordination environment.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5492–5501 5492–5501"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Local Structure and the Ligand Field of Organic Cation Preintercalated Vanadate Cathode for Aqueous Zinc-Ion Batteries\",\"authors\":\"Heng Liu, Huanhuan Niu, Wei-Hsiang Huang, Ting Shen, Changyuan Li, Chun-Chi Chang, Menghao Yang, Chenlong Gao, Long Yang, Quan Zong, Yanzhong Pei, Guozhong Cao* and Chaofeng Liu*, \",\"doi\":\"10.1021/acsenergylett.4c0270910.1021/acsenergylett.4c02709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Layered vanadium-based materials have been extensively studied as promising cathode materials for aqueous zinc-ion batteries (AZIBs). However, challenges remain to achieve the desired high energy conversion efficiency and energy densities as well as long cycling stability requiring an in-depth understanding of the local and the electronic structure of a vanadium-based cathode, especially concerning the impacts on electrochemical potential and mass transfer in the electrochemical process. In this work, 1-butyl-1-methylpyrrolidinium cations are preintercalated into the layered hydrate vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>·<i>n</i>H<sub>2</sub>O) and partially replace the electroneutral structural water, changing the local atomic environment. X-ray absorption spectroscopies demonstrate the V–O bond elongation and the distortion in the [VO<sub>6</sub>] octahedra, which alter the ligand field and brings the V 3<i>d</i> state to a lower energy level, ultimately leading to an increase in the electrochemical potential. It is also revealed that the preintercalated organic cations exert electrostatic interaction with lattice oxygen, stabilizing the layered structure and buffering lattice strain during cycling. Consequently, the modified cathode achieves a superior specific capacity of 412 mAh/g at 0.5 A/g and a capacity retention of 97% after 3000 cycles at 8 A/g. The unveiled correlation between local structure and electrochemical performance paves the way for optimizing the cathode materials by manipulating the local coordination environment.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"9 11\",\"pages\":\"5492–5501 5492–5501\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02709\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02709","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
层状钒基材料作为水性锌离子电池(AZIBs)的阴极材料,已经得到了广泛的研究。然而,要实现理想的高能量转换效率和能量密度以及长时间循环稳定性仍面临挑战,需要深入了解钒基阴极的局部和电子结构,特别是在电化学过程中对电化学势和传质的影响。在这项研究中,1-丁基-1-甲基吡咯烷鎓阳离子被预插层到层状水合物五氧化二钒(V2O5-nH2O)中,部分取代了电中性结构水,改变了局部原子环境。X 射线吸收光谱显示了 V-O 键的伸长和[VO6]八面体的扭曲,这改变了配体场,并使 V 3d 态处于较低能级,最终导致电化学势的增加。研究还发现,预烧结的有机阳离子与晶格氧产生了静电作用,从而稳定了层状结构,并在循环过程中缓冲了晶格应变。因此,改性阴极在 0.5 A/g 条件下的比容量达到了 412 mAh/g,在 8 A/g 条件下循环 3000 次后的容量保持率为 97%。局部结构与电化学性能之间的相关性得到了揭示,这为通过操纵局部配位环境来优化阴极材料铺平了道路。
Unveiling the Local Structure and the Ligand Field of Organic Cation Preintercalated Vanadate Cathode for Aqueous Zinc-Ion Batteries
Layered vanadium-based materials have been extensively studied as promising cathode materials for aqueous zinc-ion batteries (AZIBs). However, challenges remain to achieve the desired high energy conversion efficiency and energy densities as well as long cycling stability requiring an in-depth understanding of the local and the electronic structure of a vanadium-based cathode, especially concerning the impacts on electrochemical potential and mass transfer in the electrochemical process. In this work, 1-butyl-1-methylpyrrolidinium cations are preintercalated into the layered hydrate vanadium pentoxide (V2O5·nH2O) and partially replace the electroneutral structural water, changing the local atomic environment. X-ray absorption spectroscopies demonstrate the V–O bond elongation and the distortion in the [VO6] octahedra, which alter the ligand field and brings the V 3d state to a lower energy level, ultimately leading to an increase in the electrochemical potential. It is also revealed that the preintercalated organic cations exert electrostatic interaction with lattice oxygen, stabilizing the layered structure and buffering lattice strain during cycling. Consequently, the modified cathode achieves a superior specific capacity of 412 mAh/g at 0.5 A/g and a capacity retention of 97% after 3000 cycles at 8 A/g. The unveiled correlation between local structure and electrochemical performance paves the way for optimizing the cathode materials by manipulating the local coordination environment.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.