{"title":"在液化氨中通过阴极氧活化电化学合成亚硝酸盐和硝酸盐","authors":"Moritz Lukas Krebs, and , Ferdi Schüth*, ","doi":"10.1021/jacs.4c1027910.1021/jacs.4c10279","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical oxidation of ammonia (NH<sub>3</sub>) enables decentralized small-scale synthesis of nitrate (NO<sub>3</sub><sup>–</sup>) and nitrite (NO<sub>2</sub><sup>–</sup>) under ambient conditions by directly utilizing renewable energy. Yet, their electrosynthesis has been restricted to aqueous media and low ammonia concentrations. For the first time, we demonstrate here a strategy enabling the direct electrooxidation of liquefied NH<sub>3</sub> to NO<sub>3</sub><sup>–</sup> and NO<sub>2</sub><sup>–</sup> by using molecular oxygen, achieving combined Faraday efficiencies above 40%.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30753–30757 30753–30757"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c10279","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Synthesis of Nitrite and Nitrate via Cathodic Oxygen Activation in Liquefied Ammonia\",\"authors\":\"Moritz Lukas Krebs, and , Ferdi Schüth*, \",\"doi\":\"10.1021/jacs.4c1027910.1021/jacs.4c10279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrochemical oxidation of ammonia (NH<sub>3</sub>) enables decentralized small-scale synthesis of nitrate (NO<sub>3</sub><sup>–</sup>) and nitrite (NO<sub>2</sub><sup>–</sup>) under ambient conditions by directly utilizing renewable energy. Yet, their electrosynthesis has been restricted to aqueous media and low ammonia concentrations. For the first time, we demonstrate here a strategy enabling the direct electrooxidation of liquefied NH<sub>3</sub> to NO<sub>3</sub><sup>–</sup> and NO<sub>2</sub><sup>–</sup> by using molecular oxygen, achieving combined Faraday efficiencies above 40%.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 45\",\"pages\":\"30753–30757 30753–30757\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c10279\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c10279\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c10279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrochemical Synthesis of Nitrite and Nitrate via Cathodic Oxygen Activation in Liquefied Ammonia
The electrochemical oxidation of ammonia (NH3) enables decentralized small-scale synthesis of nitrate (NO3–) and nitrite (NO2–) under ambient conditions by directly utilizing renewable energy. Yet, their electrosynthesis has been restricted to aqueous media and low ammonia concentrations. For the first time, we demonstrate here a strategy enabling the direct electrooxidation of liquefied NH3 to NO3– and NO2– by using molecular oxygen, achieving combined Faraday efficiencies above 40%.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.