Shu Li, Lu Peng, Liuqing Chen, Linjie Que, Wenqingqing Kang, Xiaojun Hu, Jun Ma, Zengru Di and Yu Liu*,
{"title":"通过层次结构信息和分子动力学模拟发现高生物活性多肽","authors":"Shu Li, Lu Peng, Liuqing Chen, Linjie Que, Wenqingqing Kang, Xiaojun Hu, Jun Ma, Zengru Di and Yu Liu*, ","doi":"10.1021/acs.jcim.4c0100610.1021/acs.jcim.4c01006","DOIUrl":null,"url":null,"abstract":"<p >Peptide drugs play an essential role in modern therapeutics, but the computational design of these molecules is hindered by several challenges. Traditional methods like molecular docking and molecular dynamics (MD) simulation, as well as recent deep learning approaches, often face limitations related to computational resource demands, complex binding affinity assessments, extensive data requirements, and poor model interpretability. Here, we introduce <i>PepHiRe</i>, an innovative methodology that utilizes the hierarchical structural information in peptide sequences and employs a novel strategy called Ladderpath, rooted in algorithmic information theory, to rapidly generate and enhance the efficiency and clarity of novel peptide design. We applied <i>PepHiRe</i> to develop BH3-like peptide inhibitors targeting myeloid cell leukemia-1, a protein associated with various cancers. By analyzing just eight known bioactive BH3 peptide sequences, <i>PepHiRe</i> effectively derived a hierarchy of subsequences used to create new BH3-like peptides. These peptides underwent screening through MD simulations, leading to the selection of five candidates for synthesis and subsequent in vitro testing. Experimental results demonstrated that these five peptides possess high inhibitory activity, with IC<sub>50</sub> values ranging from 28.13 ± 7.93 to 167.42 ± 22.15 nM. Our study explores a white-box model driven technique and a structured screening pipeline for identifying and generating novel peptides with potential bioactivity.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 21","pages":"8164–8175 8164–8175"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Highly Bioactive Peptides through Hierarchical Structural Information and Molecular Dynamics Simulations\",\"authors\":\"Shu Li, Lu Peng, Liuqing Chen, Linjie Que, Wenqingqing Kang, Xiaojun Hu, Jun Ma, Zengru Di and Yu Liu*, \",\"doi\":\"10.1021/acs.jcim.4c0100610.1021/acs.jcim.4c01006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Peptide drugs play an essential role in modern therapeutics, but the computational design of these molecules is hindered by several challenges. Traditional methods like molecular docking and molecular dynamics (MD) simulation, as well as recent deep learning approaches, often face limitations related to computational resource demands, complex binding affinity assessments, extensive data requirements, and poor model interpretability. Here, we introduce <i>PepHiRe</i>, an innovative methodology that utilizes the hierarchical structural information in peptide sequences and employs a novel strategy called Ladderpath, rooted in algorithmic information theory, to rapidly generate and enhance the efficiency and clarity of novel peptide design. We applied <i>PepHiRe</i> to develop BH3-like peptide inhibitors targeting myeloid cell leukemia-1, a protein associated with various cancers. By analyzing just eight known bioactive BH3 peptide sequences, <i>PepHiRe</i> effectively derived a hierarchy of subsequences used to create new BH3-like peptides. These peptides underwent screening through MD simulations, leading to the selection of five candidates for synthesis and subsequent in vitro testing. Experimental results demonstrated that these five peptides possess high inhibitory activity, with IC<sub>50</sub> values ranging from 28.13 ± 7.93 to 167.42 ± 22.15 nM. Our study explores a white-box model driven technique and a structured screening pipeline for identifying and generating novel peptides with potential bioactivity.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"64 21\",\"pages\":\"8164–8175 8164–8175\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01006\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01006","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery of Highly Bioactive Peptides through Hierarchical Structural Information and Molecular Dynamics Simulations
Peptide drugs play an essential role in modern therapeutics, but the computational design of these molecules is hindered by several challenges. Traditional methods like molecular docking and molecular dynamics (MD) simulation, as well as recent deep learning approaches, often face limitations related to computational resource demands, complex binding affinity assessments, extensive data requirements, and poor model interpretability. Here, we introduce PepHiRe, an innovative methodology that utilizes the hierarchical structural information in peptide sequences and employs a novel strategy called Ladderpath, rooted in algorithmic information theory, to rapidly generate and enhance the efficiency and clarity of novel peptide design. We applied PepHiRe to develop BH3-like peptide inhibitors targeting myeloid cell leukemia-1, a protein associated with various cancers. By analyzing just eight known bioactive BH3 peptide sequences, PepHiRe effectively derived a hierarchy of subsequences used to create new BH3-like peptides. These peptides underwent screening through MD simulations, leading to the selection of five candidates for synthesis and subsequent in vitro testing. Experimental results demonstrated that these five peptides possess high inhibitory activity, with IC50 values ranging from 28.13 ± 7.93 to 167.42 ± 22.15 nM. Our study explores a white-box model driven technique and a structured screening pipeline for identifying and generating novel peptides with potential bioactivity.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.