Leonhard Karger, Rui Yao, Karsten Seidel, Barbara Nascimento Nunes, Ananyo Roy, Ruizhuo Zhang, Jürgen Janek, Aleksandr Kondrakov* and Torsten Brezesinski*,
{"title":"通过亚计量合成层状富镍氧化物阴极解决残锂问题","authors":"Leonhard Karger, Rui Yao, Karsten Seidel, Barbara Nascimento Nunes, Ananyo Roy, Ruizhuo Zhang, Jürgen Janek, Aleksandr Kondrakov* and Torsten Brezesinski*, ","doi":"10.1021/acsenergylett.4c0256710.1021/acsenergylett.4c02567","DOIUrl":null,"url":null,"abstract":"<p >Herein, we deliberately used substoichiometric amounts of lithium hydroxide for preparing layered Ni-rich oxide cathode materials with minor or even no residual lithium being present on the particle surface. This approach allows record capacities with LiNiO<sub>2</sub> to be achieved while using up to 7% less lithium and avoiding tedious postprocessing steps, thus facilitating synthesis and improving battery performance.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5573–5575 5573–5575"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Residual Lithium Problem by Substoichiometric Synthesis of Layered Ni-Rich Oxide Cathodes\",\"authors\":\"Leonhard Karger, Rui Yao, Karsten Seidel, Barbara Nascimento Nunes, Ananyo Roy, Ruizhuo Zhang, Jürgen Janek, Aleksandr Kondrakov* and Torsten Brezesinski*, \",\"doi\":\"10.1021/acsenergylett.4c0256710.1021/acsenergylett.4c02567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Herein, we deliberately used substoichiometric amounts of lithium hydroxide for preparing layered Ni-rich oxide cathode materials with minor or even no residual lithium being present on the particle surface. This approach allows record capacities with LiNiO<sub>2</sub> to be achieved while using up to 7% less lithium and avoiding tedious postprocessing steps, thus facilitating synthesis and improving battery performance.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"9 11\",\"pages\":\"5573–5575 5573–5575\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02567\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02567","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Solving the Residual Lithium Problem by Substoichiometric Synthesis of Layered Ni-Rich Oxide Cathodes
Herein, we deliberately used substoichiometric amounts of lithium hydroxide for preparing layered Ni-rich oxide cathode materials with minor or even no residual lithium being present on the particle surface. This approach allows record capacities with LiNiO2 to be achieved while using up to 7% less lithium and avoiding tedious postprocessing steps, thus facilitating synthesis and improving battery performance.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.