Ziyi Li, Anxin Sun, Congcong Tian, Rongshan Zhuang, Yiting Zheng, Xiling Wu, Beilin Ouyang, Jiajun Du, Jingyu Cai, Jinling Chen, Teng Xue, Ran Li, Tiantian Cen, Yuyang Zhao, Kaibo Zhao, Qianwen Chen and Chun-Chao Chen*,
{"title":"通过热诱导的解离和氧化还原反应实现可持续的分子钝化,用于反相包晶石太阳能电池","authors":"Ziyi Li, Anxin Sun, Congcong Tian, Rongshan Zhuang, Yiting Zheng, Xiling Wu, Beilin Ouyang, Jiajun Du, Jingyu Cai, Jinling Chen, Teng Xue, Ran Li, Tiantian Cen, Yuyang Zhao, Kaibo Zhao, Qianwen Chen and Chun-Chao Chen*, ","doi":"10.1021/acsenergylett.4c0222010.1021/acsenergylett.4c02220","DOIUrl":null,"url":null,"abstract":"<p >Molecular materials with high structure-design freedom are used as new interface passivators to reduce nonradiative recombination in inverted perovskite solar cells (PSCs). However, most molecular modifiers are unable to achieve a long-term passivation effect due to self-aggregation. Here, the molecular modifier 1-methyl-2-thiomethyl-1<i>H</i>-imidazole-5-carboxylate (SMC) with ester and thiol groups is carefully developed. The ester groups weaken self-aggregation triggered by intermolecular hydrogen bonds, making such aggregations easier to disassemble during heating to form a net-like insulating layer with random openings, which dramatically increase charge transport. More importantly, the electron transfer between thiol and disulfide can accelerate the elimination of Pb<sub>0</sub> and I<sub>2</sub> by redox reactions to prevent phase separation. Ultimately, the optimized inverted PSCs with bandgaps of 1.68 and 1.55 eV showed surprising fill factors of 84.83% and 86.18%, resulting in champion efficiencies of 23.45% (certified 22.98%, which is the highest to date for wide-bandgap) and 25.71% (certified 25.28%), respectively. Remarkably, both unencapsulated devices maintained over 94% of their initial efficiency under maximum power point tracking for 600 h (50 °C) and 1000 h (65 °C), respectively, confirming impressive long-term operational stability.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5471–5482 5471–5482"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Molecular Passivation via Heat-Induced Disaggregation and Redox Reactions for Inverted Perovskite Solar Cells\",\"authors\":\"Ziyi Li, Anxin Sun, Congcong Tian, Rongshan Zhuang, Yiting Zheng, Xiling Wu, Beilin Ouyang, Jiajun Du, Jingyu Cai, Jinling Chen, Teng Xue, Ran Li, Tiantian Cen, Yuyang Zhao, Kaibo Zhao, Qianwen Chen and Chun-Chao Chen*, \",\"doi\":\"10.1021/acsenergylett.4c0222010.1021/acsenergylett.4c02220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molecular materials with high structure-design freedom are used as new interface passivators to reduce nonradiative recombination in inverted perovskite solar cells (PSCs). However, most molecular modifiers are unable to achieve a long-term passivation effect due to self-aggregation. Here, the molecular modifier 1-methyl-2-thiomethyl-1<i>H</i>-imidazole-5-carboxylate (SMC) with ester and thiol groups is carefully developed. The ester groups weaken self-aggregation triggered by intermolecular hydrogen bonds, making such aggregations easier to disassemble during heating to form a net-like insulating layer with random openings, which dramatically increase charge transport. More importantly, the electron transfer between thiol and disulfide can accelerate the elimination of Pb<sub>0</sub> and I<sub>2</sub> by redox reactions to prevent phase separation. Ultimately, the optimized inverted PSCs with bandgaps of 1.68 and 1.55 eV showed surprising fill factors of 84.83% and 86.18%, resulting in champion efficiencies of 23.45% (certified 22.98%, which is the highest to date for wide-bandgap) and 25.71% (certified 25.28%), respectively. Remarkably, both unencapsulated devices maintained over 94% of their initial efficiency under maximum power point tracking for 600 h (50 °C) and 1000 h (65 °C), respectively, confirming impressive long-term operational stability.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"9 11\",\"pages\":\"5471–5482 5471–5482\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02220\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02220","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Sustainable Molecular Passivation via Heat-Induced Disaggregation and Redox Reactions for Inverted Perovskite Solar Cells
Molecular materials with high structure-design freedom are used as new interface passivators to reduce nonradiative recombination in inverted perovskite solar cells (PSCs). However, most molecular modifiers are unable to achieve a long-term passivation effect due to self-aggregation. Here, the molecular modifier 1-methyl-2-thiomethyl-1H-imidazole-5-carboxylate (SMC) with ester and thiol groups is carefully developed. The ester groups weaken self-aggregation triggered by intermolecular hydrogen bonds, making such aggregations easier to disassemble during heating to form a net-like insulating layer with random openings, which dramatically increase charge transport. More importantly, the electron transfer between thiol and disulfide can accelerate the elimination of Pb0 and I2 by redox reactions to prevent phase separation. Ultimately, the optimized inverted PSCs with bandgaps of 1.68 and 1.55 eV showed surprising fill factors of 84.83% and 86.18%, resulting in champion efficiencies of 23.45% (certified 22.98%, which is the highest to date for wide-bandgap) and 25.71% (certified 25.28%), respectively. Remarkably, both unencapsulated devices maintained over 94% of their initial efficiency under maximum power point tracking for 600 h (50 °C) and 1000 h (65 °C), respectively, confirming impressive long-term operational stability.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.