用于制造 10 纳米以下高性能 P 型晶体管的二维 ZrS2 和 HfS2

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-10-28 DOI:10.1021/acs.jpclett.4c0269410.1021/acs.jpclett.4c02694
Xuemin Hu, Yu Huang, Hengze Qu*, Yuanfeng Ye* and Shengli Zhang, 
{"title":"用于制造 10 纳米以下高性能 P 型晶体管的二维 ZrS2 和 HfS2","authors":"Xuemin Hu,&nbsp;Yu Huang,&nbsp;Hengze Qu*,&nbsp;Yuanfeng Ye* and Shengli Zhang,&nbsp;","doi":"10.1021/acs.jpclett.4c0269410.1021/acs.jpclett.4c02694","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors have been recognized as reliable candidates for future sub-10 nm physical gate length field-effect transistors (FETs). However, the device performance of 2D P-type devices is far inferior to that of N-type devices, which seriously hinders the development of complementary metal-oxide-semiconductor (CMOS) integrated circuits. Herein, we presented that two new 2D TMDC channel materials, ZrS<sub>2</sub> and HfS<sub>2</sub>, can realize high-performance P-type MOSFETs through first-principles quantum transport simulations. Different from the 2D MoS<sub>2</sub> and WSe<sub>2</sub>, the continuous in-plane <i>p</i>-orbitals at the valence band edge of 2D ZrS<sub>2</sub> and HfS<sub>2</sub> lead to a small hole effective mass of 0.24 m<sub>0</sub>. As a result, 2D ZrS<sub>2</sub> and HfS<sub>2</sub> P-type MOSFETs with 10 nm gate length possess an on-state current (<i>I</i><sub>on</sub>) as high as 2000 μA/μm. Moreover, even when the gate length shrinks to 5 nm, the <i>I</i><sub>on</sub> can also reach ∼1500 μA/μm with the energy delay product ranging from 3 × 10<sup>–30</sup> to 1 × 10<sup>–29</sup> Js/μm, which are better than many other 2D P-type MOSFETs like MoS<sub>2</sub> and WSe<sub>2</sub>. Our work demonstrates that 2D ZrS<sub>2</sub> and HfS<sub>2</sub> are competitive channel materials for constructing future sub-10 nm P-type high-performance FETs.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 44","pages":"11035–11041 11035–11041"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional ZrS2 and HfS2 for Making Sub-10 nm High-Performance P-Type Transistors\",\"authors\":\"Xuemin Hu,&nbsp;Yu Huang,&nbsp;Hengze Qu*,&nbsp;Yuanfeng Ye* and Shengli Zhang,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.4c0269410.1021/acs.jpclett.4c02694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors have been recognized as reliable candidates for future sub-10 nm physical gate length field-effect transistors (FETs). However, the device performance of 2D P-type devices is far inferior to that of N-type devices, which seriously hinders the development of complementary metal-oxide-semiconductor (CMOS) integrated circuits. Herein, we presented that two new 2D TMDC channel materials, ZrS<sub>2</sub> and HfS<sub>2</sub>, can realize high-performance P-type MOSFETs through first-principles quantum transport simulations. Different from the 2D MoS<sub>2</sub> and WSe<sub>2</sub>, the continuous in-plane <i>p</i>-orbitals at the valence band edge of 2D ZrS<sub>2</sub> and HfS<sub>2</sub> lead to a small hole effective mass of 0.24 m<sub>0</sub>. As a result, 2D ZrS<sub>2</sub> and HfS<sub>2</sub> P-type MOSFETs with 10 nm gate length possess an on-state current (<i>I</i><sub>on</sub>) as high as 2000 μA/μm. Moreover, even when the gate length shrinks to 5 nm, the <i>I</i><sub>on</sub> can also reach ∼1500 μA/μm with the energy delay product ranging from 3 × 10<sup>–30</sup> to 1 × 10<sup>–29</sup> Js/μm, which are better than many other 2D P-type MOSFETs like MoS<sub>2</sub> and WSe<sub>2</sub>. Our work demonstrates that 2D ZrS<sub>2</sub> and HfS<sub>2</sub> are competitive channel materials for constructing future sub-10 nm P-type high-performance FETs.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"15 44\",\"pages\":\"11035–11041 11035–11041\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02694\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02694","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)过渡金属二卤化物(TMDC)半导体已被认为是未来物理栅极长度小于 10 纳米的场效应晶体管(FET)的可靠候选材料。然而,二维 P 型器件的性能远不如 N 型器件,这严重阻碍了互补金属氧化物半导体(CMOS)集成电路的发展。在此,我们通过第一原理量子输运模拟,提出了两种新型二维 TMDC 沟道材料 ZrS2 和 HfS2 可以实现高性能 P 型 MOSFET。与二维MoS2和WSe2不同,二维ZrS2和HfS2价带边缘连续的面内p轨道导致了0.24 m0的小空穴有效质量。因此,栅极长度为 10 nm 的二维 ZrS2 和 HfS2 P 型 MOSFET 的导通电流(Ion)高达 2000 μA/μm。此外,即使栅极长度缩小到 5 nm,Ion 也能达到 ∼1500 μA/μm,能量延迟积为 3 × 10-30 到 1 × 10-29 Js/μm,优于 MoS2 和 WSe2 等许多其他二维 P 型 MOSFET。我们的工作表明,二维 ZrS2 和 HfS2 是构建未来 10 纳米以下 P 型高性能场效应晶体管的具有竞争力的沟道材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-Dimensional ZrS2 and HfS2 for Making Sub-10 nm High-Performance P-Type Transistors

Two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors have been recognized as reliable candidates for future sub-10 nm physical gate length field-effect transistors (FETs). However, the device performance of 2D P-type devices is far inferior to that of N-type devices, which seriously hinders the development of complementary metal-oxide-semiconductor (CMOS) integrated circuits. Herein, we presented that two new 2D TMDC channel materials, ZrS2 and HfS2, can realize high-performance P-type MOSFETs through first-principles quantum transport simulations. Different from the 2D MoS2 and WSe2, the continuous in-plane p-orbitals at the valence band edge of 2D ZrS2 and HfS2 lead to a small hole effective mass of 0.24 m0. As a result, 2D ZrS2 and HfS2 P-type MOSFETs with 10 nm gate length possess an on-state current (Ion) as high as 2000 μA/μm. Moreover, even when the gate length shrinks to 5 nm, the Ion can also reach ∼1500 μA/μm with the energy delay product ranging from 3 × 10–30 to 1 × 10–29 Js/μm, which are better than many other 2D P-type MOSFETs like MoS2 and WSe2. Our work demonstrates that 2D ZrS2 and HfS2 are competitive channel materials for constructing future sub-10 nm P-type high-performance FETs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Folding and Misfolding Dynamics of Irisin Protein Revealed by Single-Molecule Magnetic Tweezers State Tracking in Nonadiabatic Molecular Dynamics Using Only Forces and Energies Dielectric Barrier Corona Activation of Electrical Discharge in a Cavitating Liquid X-ray-Induced Molecular Catapult: Ultrafast Dynamics Driven by Lightweight Linkages Sticky Superhydrophobic State
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1