Andreas Beer, Klaus Zollner, Caique Serati de Brito, Paulo E. Faria Junior, Philipp Parzefall, Talieh S. Ghiasi, Josep Ingla-Aynés, Samuel Mañas-Valero, Carla Boix-Constant, Kenji Watanabe, Takashi Taniguchi, Jaroslav Fabian, Herre S. J. van der Zant, Yara Galvão Gobato and Christian Schüller*,
{"title":"具有正交自旋纹理的 MoSe2/CrSBr Van-Der-Waals 异质结构中近距离诱导的交换相互作用和延长的山谷寿命","authors":"Andreas Beer, Klaus Zollner, Caique Serati de Brito, Paulo E. Faria Junior, Philipp Parzefall, Talieh S. Ghiasi, Josep Ingla-Aynés, Samuel Mañas-Valero, Carla Boix-Constant, Kenji Watanabe, Takashi Taniguchi, Jaroslav Fabian, Herre S. J. van der Zant, Yara Galvão Gobato and Christian Schüller*, ","doi":"10.1021/acsnano.4c0733610.1021/acsnano.4c07336","DOIUrl":null,"url":null,"abstract":"<p >Heterostructures, composed of semiconducting transition-metal dichalcogenides (TMDC) and magnetic van-der-Waals materials, offer exciting prospects for the manipulation of the TMDC valley properties via proximity interaction with the magnetic material. We show that the atomic proximity of monolayer MoSe<sub>2</sub> and the antiferromagnetic van-der-Waals crystal CrSBr leads to an unexpected breaking of time-reversal symmetry, with originally perpendicular spin directions in both materials. The observed effect can be traced back to a proximity-induced exchange interaction via first-principles calculations. The resulting spin splitting in MoSe<sub>2</sub> is determined experimentally and theoretically to be on the order of a few meV. Moreover, we find a more than 2 orders of magnitude longer valley lifetime of spin-polarized charge carriers in the heterostructure, as compared to monolayer MoSe<sub>2</sub>/SiO<sub>2</sub>, driven by a Mott transition in the type-III band-aligned heterostructure.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31044–31054 31044–31054"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c07336","citationCount":"0","resultStr":"{\"title\":\"Proximity-Induced Exchange Interaction and Prolonged Valley Lifetime in MoSe2/CrSBr Van-Der-Waals Heterostructure with Orthogonal Spin Textures\",\"authors\":\"Andreas Beer, Klaus Zollner, Caique Serati de Brito, Paulo E. Faria Junior, Philipp Parzefall, Talieh S. Ghiasi, Josep Ingla-Aynés, Samuel Mañas-Valero, Carla Boix-Constant, Kenji Watanabe, Takashi Taniguchi, Jaroslav Fabian, Herre S. J. van der Zant, Yara Galvão Gobato and Christian Schüller*, \",\"doi\":\"10.1021/acsnano.4c0733610.1021/acsnano.4c07336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Heterostructures, composed of semiconducting transition-metal dichalcogenides (TMDC) and magnetic van-der-Waals materials, offer exciting prospects for the manipulation of the TMDC valley properties via proximity interaction with the magnetic material. We show that the atomic proximity of monolayer MoSe<sub>2</sub> and the antiferromagnetic van-der-Waals crystal CrSBr leads to an unexpected breaking of time-reversal symmetry, with originally perpendicular spin directions in both materials. The observed effect can be traced back to a proximity-induced exchange interaction via first-principles calculations. The resulting spin splitting in MoSe<sub>2</sub> is determined experimentally and theoretically to be on the order of a few meV. Moreover, we find a more than 2 orders of magnitude longer valley lifetime of spin-polarized charge carriers in the heterostructure, as compared to monolayer MoSe<sub>2</sub>/SiO<sub>2</sub>, driven by a Mott transition in the type-III band-aligned heterostructure.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 45\",\"pages\":\"31044–31054 31044–31054\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c07336\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c07336\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c07336","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Proximity-Induced Exchange Interaction and Prolonged Valley Lifetime in MoSe2/CrSBr Van-Der-Waals Heterostructure with Orthogonal Spin Textures
Heterostructures, composed of semiconducting transition-metal dichalcogenides (TMDC) and magnetic van-der-Waals materials, offer exciting prospects for the manipulation of the TMDC valley properties via proximity interaction with the magnetic material. We show that the atomic proximity of monolayer MoSe2 and the antiferromagnetic van-der-Waals crystal CrSBr leads to an unexpected breaking of time-reversal symmetry, with originally perpendicular spin directions in both materials. The observed effect can be traced back to a proximity-induced exchange interaction via first-principles calculations. The resulting spin splitting in MoSe2 is determined experimentally and theoretically to be on the order of a few meV. Moreover, we find a more than 2 orders of magnitude longer valley lifetime of spin-polarized charge carriers in the heterostructure, as compared to monolayer MoSe2/SiO2, driven by a Mott transition in the type-III band-aligned heterostructure.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.