Ying Jie Zheng, Jun Jiang Luo, Hao Lin Zou, Kuoran Xing, Hong Qun Luo, Zhong Feng Gao, Nian Bing Li*, David Tai Leong* and Bang Lin Li*,
{"title":"利用通用比色纳米材料的隧道咖啡环效应进行超快现场微生物监测","authors":"Ying Jie Zheng, Jun Jiang Luo, Hao Lin Zou, Kuoran Xing, Hong Qun Luo, Zhong Feng Gao, Nian Bing Li*, David Tai Leong* and Bang Lin Li*, ","doi":"10.1021/acs.analchem.4c0427610.1021/acs.analchem.4c04276","DOIUrl":null,"url":null,"abstract":"<p >The coffee-ring effect is an eye-catching circle originating from a material-suspended liquid droplet at a solid substrate after liquid evaporation, but the low speediness has restricted practical applications. When nanomaterial aqueous solutions are dropped onto porous nitrocellulose (NC), the liquid is immediately absorbed through the porous tunnels of paper fibers, and nanomaterials are rapidly enriched on the contact lines between droplets and membranes. We called this ultrafast variant of the coffee ring effect the “tunneling coffee ring” (TCR). When nanomaterial sizes are smaller than that of pores, a larger-diameter ring of nanomaterials quickly materializes. The real-time particle size-dependent TCRs and liquid diffusion rings exhibit a dual-ring pattern on the NC membrane. The tunneling speed of the capillary effect is so fast that the pattern appears within seconds. We apply the TCR effect as a size-surface affinity-particle/fluid separation sensor for bacteria. Dextran-modified Au and MoS<sub>2</sub> nanostructures are proposed to be antibody-free microbe kits. Our TCR effect is used to distinguish between particles of different sizes and affinities, which are highly relevant in complicated systems without electricity and equipment in resource-poor settings.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 45","pages":"18161–18169 18161–18169"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting the Tunneling Coffee Ring Effect of Universal Colorimetric Nanomaterials for Ultrafast On-Site Microbial Monitoring\",\"authors\":\"Ying Jie Zheng, Jun Jiang Luo, Hao Lin Zou, Kuoran Xing, Hong Qun Luo, Zhong Feng Gao, Nian Bing Li*, David Tai Leong* and Bang Lin Li*, \",\"doi\":\"10.1021/acs.analchem.4c0427610.1021/acs.analchem.4c04276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The coffee-ring effect is an eye-catching circle originating from a material-suspended liquid droplet at a solid substrate after liquid evaporation, but the low speediness has restricted practical applications. When nanomaterial aqueous solutions are dropped onto porous nitrocellulose (NC), the liquid is immediately absorbed through the porous tunnels of paper fibers, and nanomaterials are rapidly enriched on the contact lines between droplets and membranes. We called this ultrafast variant of the coffee ring effect the “tunneling coffee ring” (TCR). When nanomaterial sizes are smaller than that of pores, a larger-diameter ring of nanomaterials quickly materializes. The real-time particle size-dependent TCRs and liquid diffusion rings exhibit a dual-ring pattern on the NC membrane. The tunneling speed of the capillary effect is so fast that the pattern appears within seconds. We apply the TCR effect as a size-surface affinity-particle/fluid separation sensor for bacteria. Dextran-modified Au and MoS<sub>2</sub> nanostructures are proposed to be antibody-free microbe kits. Our TCR effect is used to distinguish between particles of different sizes and affinities, which are highly relevant in complicated systems without electricity and equipment in resource-poor settings.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"96 45\",\"pages\":\"18161–18169 18161–18169\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c04276\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c04276","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Exploiting the Tunneling Coffee Ring Effect of Universal Colorimetric Nanomaterials for Ultrafast On-Site Microbial Monitoring
The coffee-ring effect is an eye-catching circle originating from a material-suspended liquid droplet at a solid substrate after liquid evaporation, but the low speediness has restricted practical applications. When nanomaterial aqueous solutions are dropped onto porous nitrocellulose (NC), the liquid is immediately absorbed through the porous tunnels of paper fibers, and nanomaterials are rapidly enriched on the contact lines between droplets and membranes. We called this ultrafast variant of the coffee ring effect the “tunneling coffee ring” (TCR). When nanomaterial sizes are smaller than that of pores, a larger-diameter ring of nanomaterials quickly materializes. The real-time particle size-dependent TCRs and liquid diffusion rings exhibit a dual-ring pattern on the NC membrane. The tunneling speed of the capillary effect is so fast that the pattern appears within seconds. We apply the TCR effect as a size-surface affinity-particle/fluid separation sensor for bacteria. Dextran-modified Au and MoS2 nanostructures are proposed to be antibody-free microbe kits. Our TCR effect is used to distinguish between particles of different sizes and affinities, which are highly relevant in complicated systems without electricity and equipment in resource-poor settings.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.