Zhiyi Chen, Alex Inague, Kamini Kaushal, Gholamreza Fazeli, Danny Schilling, Thamara N. Xavier da Silva, Ancely Ferreira dos Santos, Tasneem Cheytan, Florencio Porto Freitas, Umut Yildiz, Lucas Gasparello Viviani, Rodrigo Santiago Lima, Mikaela Peglow Pinz, Isadora Medeiros, Thais Satie Iijima, Thiago Geronimo Pires Alegria, Railmara Pereira da Silva, Larissa Regina Diniz, Simon Weinzweig, Judith Klein-Seetharaman, José Pedro Friedmann Angeli
{"title":"PRDX6 促进硒代半胱氨酸代谢和抗铁病能力","authors":"Zhiyi Chen, Alex Inague, Kamini Kaushal, Gholamreza Fazeli, Danny Schilling, Thamara N. Xavier da Silva, Ancely Ferreira dos Santos, Tasneem Cheytan, Florencio Porto Freitas, Umut Yildiz, Lucas Gasparello Viviani, Rodrigo Santiago Lima, Mikaela Peglow Pinz, Isadora Medeiros, Thais Satie Iijima, Thiago Geronimo Pires Alegria, Railmara Pereira da Silva, Larissa Regina Diniz, Simon Weinzweig, Judith Klein-Seetharaman, José Pedro Friedmann Angeli","doi":"10.1016/j.molcel.2024.10.027","DOIUrl":null,"url":null,"abstract":"Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and begins with the uptake of the Sec carrier, selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP is metabolized via selenocysteine lyase (SCLY), producing selenide, a substrate for selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor, selenophosphate (H<sub>2</sub>SePO<sub>3</sub><sup>−</sup>), for the biosynthesis of the Sec-tRNA. Here, we discovered an alternative pathway in Sec metabolism mediated by peroxiredoxin 6 (PRDX6), independent of SCLY. Mechanistically, we demonstrate that PRDX6 can readily react with selenide and interact with SEPHS2, potentially acting as a selenium delivery system. Moreover, we demonstrate the functional significance of this alternative route in human cancer cells, revealing a notable association between elevated expression of PRDX6 and human MYCN-amplified neuroblastoma subtype. Our study sheds light on a previously unrecognized aspect of Sec metabolism and its implications in ferroptosis, offering further possibilities for therapeutic exploitation.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"98 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PRDX6 contributes to selenocysteine metabolism and ferroptosis resistance\",\"authors\":\"Zhiyi Chen, Alex Inague, Kamini Kaushal, Gholamreza Fazeli, Danny Schilling, Thamara N. Xavier da Silva, Ancely Ferreira dos Santos, Tasneem Cheytan, Florencio Porto Freitas, Umut Yildiz, Lucas Gasparello Viviani, Rodrigo Santiago Lima, Mikaela Peglow Pinz, Isadora Medeiros, Thais Satie Iijima, Thiago Geronimo Pires Alegria, Railmara Pereira da Silva, Larissa Regina Diniz, Simon Weinzweig, Judith Klein-Seetharaman, José Pedro Friedmann Angeli\",\"doi\":\"10.1016/j.molcel.2024.10.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and begins with the uptake of the Sec carrier, selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP is metabolized via selenocysteine lyase (SCLY), producing selenide, a substrate for selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor, selenophosphate (H<sub>2</sub>SePO<sub>3</sub><sup>−</sup>), for the biosynthesis of the Sec-tRNA. Here, we discovered an alternative pathway in Sec metabolism mediated by peroxiredoxin 6 (PRDX6), independent of SCLY. Mechanistically, we demonstrate that PRDX6 can readily react with selenide and interact with SEPHS2, potentially acting as a selenium delivery system. Moreover, we demonstrate the functional significance of this alternative route in human cancer cells, revealing a notable association between elevated expression of PRDX6 and human MYCN-amplified neuroblastoma subtype. Our study sheds light on a previously unrecognized aspect of Sec metabolism and its implications in ferroptosis, offering further possibilities for therapeutic exploitation.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.10.027\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.10.027","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PRDX6 contributes to selenocysteine metabolism and ferroptosis resistance
Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and begins with the uptake of the Sec carrier, selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP is metabolized via selenocysteine lyase (SCLY), producing selenide, a substrate for selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor, selenophosphate (H2SePO3−), for the biosynthesis of the Sec-tRNA. Here, we discovered an alternative pathway in Sec metabolism mediated by peroxiredoxin 6 (PRDX6), independent of SCLY. Mechanistically, we demonstrate that PRDX6 can readily react with selenide and interact with SEPHS2, potentially acting as a selenium delivery system. Moreover, we demonstrate the functional significance of this alternative route in human cancer cells, revealing a notable association between elevated expression of PRDX6 and human MYCN-amplified neuroblastoma subtype. Our study sheds light on a previously unrecognized aspect of Sec metabolism and its implications in ferroptosis, offering further possibilities for therapeutic exploitation.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.