{"title":"用于锂离子电池的层状氧化物中的质子交换诱导反应性","authors":"Panpan Xu, Xingyu Guo, Binglei Jiao, Jinxing Chen, Minghao Zhang, Haodong Liu, Xiaolu Yu, Maura Appleberry, Zhenzhen Yang, Hongpeng Gao, Fan Yang, Xuefei Weng, Yanbin Shen, Jing Gu, Ying Shirley Meng, Christopher Brooks, Shyue Ping Ong, Zheng Chen","doi":"10.1038/s41467-024-53731-2","DOIUrl":null,"url":null,"abstract":"<p>LiNi<sub><i>x</i></sub>Co<sub><i>y</i></sub>Mn<sub>1-<i>x</i>-<i>y</i></sub>O<sub>2</sub> (0 < <i>x</i>, <i>y</i> < 1, NCM) is the dominant positive material for the state-of-the-art lithium-ion batteries. However, the sensitivity of NCM materials to moisture makes their manufacturing, storage, transportation, electrode processing and recycling complicated. Although it is recognized that protons play a critical role in their structure stability and performance, proton exchange with Li<sup>+</sup> in NCM materials has not been well understood. Here, we employ advanced characterizations and computational studies to elucidate how protons intercalate into the layered structure of NCM, leading to the leaching of Li<sup>+</sup> and the formation of protonated NCM. It is found that protonation facilitates cation rearrangement and formation of impurity phases in NCM, significantly deteriorating structural stability. The adverse effects induced by protons become increasingly pronounced with a higher Ni content in NCM. Through a comprehensive investigation into the thermodynamics and kinetics of protonation, we discover that Li deficiencies in NCM materials can be resolved via solution process in the presence of Li<sup>+</sup> ions and controlled proton concentration. The underlying mechanism of relithiation is further explored through materials characterizations and kinetics modeling. This work provides crucial insights into controlling structural and compositional defects of Li-ion battery positive material in complicated processing environment.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"73 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton-exchange induced reactivity in layered oxides for lithium-ion batteries\",\"authors\":\"Panpan Xu, Xingyu Guo, Binglei Jiao, Jinxing Chen, Minghao Zhang, Haodong Liu, Xiaolu Yu, Maura Appleberry, Zhenzhen Yang, Hongpeng Gao, Fan Yang, Xuefei Weng, Yanbin Shen, Jing Gu, Ying Shirley Meng, Christopher Brooks, Shyue Ping Ong, Zheng Chen\",\"doi\":\"10.1038/s41467-024-53731-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>LiNi<sub><i>x</i></sub>Co<sub><i>y</i></sub>Mn<sub>1-<i>x</i>-<i>y</i></sub>O<sub>2</sub> (0 < <i>x</i>, <i>y</i> < 1, NCM) is the dominant positive material for the state-of-the-art lithium-ion batteries. However, the sensitivity of NCM materials to moisture makes their manufacturing, storage, transportation, electrode processing and recycling complicated. Although it is recognized that protons play a critical role in their structure stability and performance, proton exchange with Li<sup>+</sup> in NCM materials has not been well understood. Here, we employ advanced characterizations and computational studies to elucidate how protons intercalate into the layered structure of NCM, leading to the leaching of Li<sup>+</sup> and the formation of protonated NCM. It is found that protonation facilitates cation rearrangement and formation of impurity phases in NCM, significantly deteriorating structural stability. The adverse effects induced by protons become increasingly pronounced with a higher Ni content in NCM. Through a comprehensive investigation into the thermodynamics and kinetics of protonation, we discover that Li deficiencies in NCM materials can be resolved via solution process in the presence of Li<sup>+</sup> ions and controlled proton concentration. The underlying mechanism of relithiation is further explored through materials characterizations and kinetics modeling. This work provides crucial insights into controlling structural and compositional defects of Li-ion battery positive material in complicated processing environment.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53731-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53731-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Proton-exchange induced reactivity in layered oxides for lithium-ion batteries
LiNixCoyMn1-x-yO2 (0 < x, y < 1, NCM) is the dominant positive material for the state-of-the-art lithium-ion batteries. However, the sensitivity of NCM materials to moisture makes their manufacturing, storage, transportation, electrode processing and recycling complicated. Although it is recognized that protons play a critical role in their structure stability and performance, proton exchange with Li+ in NCM materials has not been well understood. Here, we employ advanced characterizations and computational studies to elucidate how protons intercalate into the layered structure of NCM, leading to the leaching of Li+ and the formation of protonated NCM. It is found that protonation facilitates cation rearrangement and formation of impurity phases in NCM, significantly deteriorating structural stability. The adverse effects induced by protons become increasingly pronounced with a higher Ni content in NCM. Through a comprehensive investigation into the thermodynamics and kinetics of protonation, we discover that Li deficiencies in NCM materials can be resolved via solution process in the presence of Li+ ions and controlled proton concentration. The underlying mechanism of relithiation is further explored through materials characterizations and kinetics modeling. This work provides crucial insights into controlling structural and compositional defects of Li-ion battery positive material in complicated processing environment.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.