{"title":"利用 MP-PIC 仿真评估直径变换流化床反应器的放大设计","authors":"Yanyan Xie, Fei Li, Bona Lu, Youhao Xu, Wei Wang","doi":"10.1016/j.ces.2024.120904","DOIUrl":null,"url":null,"abstract":"Scale-up has always been the bottleneck to the development of new industrial processes. This study aims to assess the scale-up effects of a diameter-transformed fluidized bed (DTFB) reactor through three-dimensional, multi-phase particle-in-cell (MP-PIC) simulation with the Energy-Minimization Multi-Scale (EMMS) drag and solid stress model. Four 3.5 Mt/a DTFB reactors are designed by scaling up a 1.2 Mt/a one with different scale-up schemes and simulated after validation. It is found the Glicksman’s rule shows the most similarity in solid concentration distribution to the benchmark case while the FixedOperation rule under-predicts the solid concentration, meaning that only keeping constant <em>U</em><sub>g</sub> and <em>G</em><sub>s</sub> cannot guarantee the same distribution of solid concentration when scaling up the fast fluidized bed. In addition, all four scale-up designs ensure the same gas velocity, yet they exhibit varying solid velocities throughout the scale-up process. A more rational scale-up rule is required for the elaborate reactor scale-up","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of scale-up designs for a diameter-transformed fluidized bed reactor with MP-PIC simulation\",\"authors\":\"Yanyan Xie, Fei Li, Bona Lu, Youhao Xu, Wei Wang\",\"doi\":\"10.1016/j.ces.2024.120904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scale-up has always been the bottleneck to the development of new industrial processes. This study aims to assess the scale-up effects of a diameter-transformed fluidized bed (DTFB) reactor through three-dimensional, multi-phase particle-in-cell (MP-PIC) simulation with the Energy-Minimization Multi-Scale (EMMS) drag and solid stress model. Four 3.5 Mt/a DTFB reactors are designed by scaling up a 1.2 Mt/a one with different scale-up schemes and simulated after validation. It is found the Glicksman’s rule shows the most similarity in solid concentration distribution to the benchmark case while the FixedOperation rule under-predicts the solid concentration, meaning that only keeping constant <em>U</em><sub>g</sub> and <em>G</em><sub>s</sub> cannot guarantee the same distribution of solid concentration when scaling up the fast fluidized bed. In addition, all four scale-up designs ensure the same gas velocity, yet they exhibit varying solid velocities throughout the scale-up process. A more rational scale-up rule is required for the elaborate reactor scale-up\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ces.2024.120904\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120904","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Assessment of scale-up designs for a diameter-transformed fluidized bed reactor with MP-PIC simulation
Scale-up has always been the bottleneck to the development of new industrial processes. This study aims to assess the scale-up effects of a diameter-transformed fluidized bed (DTFB) reactor through three-dimensional, multi-phase particle-in-cell (MP-PIC) simulation with the Energy-Minimization Multi-Scale (EMMS) drag and solid stress model. Four 3.5 Mt/a DTFB reactors are designed by scaling up a 1.2 Mt/a one with different scale-up schemes and simulated after validation. It is found the Glicksman’s rule shows the most similarity in solid concentration distribution to the benchmark case while the FixedOperation rule under-predicts the solid concentration, meaning that only keeping constant Ug and Gs cannot guarantee the same distribution of solid concentration when scaling up the fast fluidized bed. In addition, all four scale-up designs ensure the same gas velocity, yet they exhibit varying solid velocities throughout the scale-up process. A more rational scale-up rule is required for the elaborate reactor scale-up
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.