Lisanne Vervoort, Nicolas Dierckxsens, Marta Sousa Santos, Senne Meynants, Erika Souche, Ruben Cools, Tracy Heung, Koen Devriendt, Hilde Peeters, Donna McDonald-McGinn, Ann Swillen, Jeroen Breckpot, Beverly S. Emanuel, Hilde Van Esch, Anne S. Bassett, Joris R. Vermeesch
{"title":"多种旁系基因和重组机制导致 22q11.2 缺失综合征的高发病率","authors":"Lisanne Vervoort, Nicolas Dierckxsens, Marta Sousa Santos, Senne Meynants, Erika Souche, Ruben Cools, Tracy Heung, Koen Devriendt, Hilde Peeters, Donna McDonald-McGinn, Ann Swillen, Jeroen Breckpot, Beverly S. Emanuel, Hilde Van Esch, Anne S. Bassett, Joris R. Vermeesch","doi":"10.1101/gr.279331.124","DOIUrl":null,"url":null,"abstract":"The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion disorder. Why the incidence of 22q11.2DS is much greater than that of other genomic disorders remains unknown. Short read sequencing cannot resolve the complex segmental duplicon structure to provide direct confirmation of the hypothesis that the rearrangements are caused by nonallelic homologous recombination between the low copy repeats on Chromosome 22 (LCR22s). To enable haplotype-specific assembly and rearrangement mapping in LCR22 regions, we combined fiber-FISH optical mapping with whole genome (ultra-)long read sequencing or rearrangement-specific long-range PCR on 24 duos (22q11.2DS patient and parent-of-origin) comprising several different LCR22-mediated rearrangements. Unexpectedly, we demonstrate that not only different paralogous segmental duplicon but also palindromic AT-rich repeats (PATRR) are driving 22q11.2 rearrangements. In addition, we show the existence of two different inversion polymorphisms preceding rearrangement, and somatic mosaicism. The existence of different recombination sites and mechanisms in paralogues and PATRRs which are copy number expanding in the human population are a likely explanation for the high 22q11.2DS incidence.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"6 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple paralogues and recombination mechanisms contribute to the high incidence of 22q11.2 Deletion Syndrome\",\"authors\":\"Lisanne Vervoort, Nicolas Dierckxsens, Marta Sousa Santos, Senne Meynants, Erika Souche, Ruben Cools, Tracy Heung, Koen Devriendt, Hilde Peeters, Donna McDonald-McGinn, Ann Swillen, Jeroen Breckpot, Beverly S. Emanuel, Hilde Van Esch, Anne S. Bassett, Joris R. Vermeesch\",\"doi\":\"10.1101/gr.279331.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion disorder. Why the incidence of 22q11.2DS is much greater than that of other genomic disorders remains unknown. Short read sequencing cannot resolve the complex segmental duplicon structure to provide direct confirmation of the hypothesis that the rearrangements are caused by nonallelic homologous recombination between the low copy repeats on Chromosome 22 (LCR22s). To enable haplotype-specific assembly and rearrangement mapping in LCR22 regions, we combined fiber-FISH optical mapping with whole genome (ultra-)long read sequencing or rearrangement-specific long-range PCR on 24 duos (22q11.2DS patient and parent-of-origin) comprising several different LCR22-mediated rearrangements. Unexpectedly, we demonstrate that not only different paralogous segmental duplicon but also palindromic AT-rich repeats (PATRR) are driving 22q11.2 rearrangements. In addition, we show the existence of two different inversion polymorphisms preceding rearrangement, and somatic mosaicism. The existence of different recombination sites and mechanisms in paralogues and PATRRs which are copy number expanding in the human population are a likely explanation for the high 22q11.2DS incidence.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279331.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279331.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Multiple paralogues and recombination mechanisms contribute to the high incidence of 22q11.2 Deletion Syndrome
The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion disorder. Why the incidence of 22q11.2DS is much greater than that of other genomic disorders remains unknown. Short read sequencing cannot resolve the complex segmental duplicon structure to provide direct confirmation of the hypothesis that the rearrangements are caused by nonallelic homologous recombination between the low copy repeats on Chromosome 22 (LCR22s). To enable haplotype-specific assembly and rearrangement mapping in LCR22 regions, we combined fiber-FISH optical mapping with whole genome (ultra-)long read sequencing or rearrangement-specific long-range PCR on 24 duos (22q11.2DS patient and parent-of-origin) comprising several different LCR22-mediated rearrangements. Unexpectedly, we demonstrate that not only different paralogous segmental duplicon but also palindromic AT-rich repeats (PATRR) are driving 22q11.2 rearrangements. In addition, we show the existence of two different inversion polymorphisms preceding rearrangement, and somatic mosaicism. The existence of different recombination sites and mechanisms in paralogues and PATRRs which are copy number expanding in the human population are a likely explanation for the high 22q11.2DS incidence.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.