Kun Yin, Yiling Xu, Ye Guo, Zhong Zheng, Xinrui Lin, Meijuan Zhao, He Dong, Dianyi Liang, Zhi Zhu, Junhua Zheng, Shichao Lin, Jia Song, Chaoyong Yang
{"title":"通过基于体内代谢 RNA 标记的 scRNA-seq,Dyna-vivo-seq 揭示急性肾损伤期间的细胞 RNA 动态变化","authors":"Kun Yin, Yiling Xu, Ye Guo, Zhong Zheng, Xinrui Lin, Meijuan Zhao, He Dong, Dianyi Liang, Zhi Zhu, Junhua Zheng, Shichao Lin, Jia Song, Chaoyong Yang","doi":"10.1038/s41467-024-54202-4","DOIUrl":null,"url":null,"abstract":"<p>A fundamental objective of genomics is to track variations in gene expression program. While metabolic RNA labeling-based single-cell RNA sequencing offers insights into temporal biological processes, its limited applicability only to in vitro models challenges the study of in vivo gene expression dynamics. Herein, we introduce Dyna-vivo-seq, a strategy that enables time-resolved dynamic transcription profiling in vivo at the single-cell level by examining new and old RNAs. The new RNAs can offer an additional dimension to reveal cellular heterogeneity. Leveraging new RNAs, we discern two distinct high and low metabolic labeling populations among proximal tubular (PT) cells. Furthermore, we identify 90 rapidly responding transcription factors during the acute kidney injury in female mice, highlighting that high metabolic labeling PT cells exhibit heightened susceptibility to injury. Dyna-vivo-seq provides a powerful tool for the characterization of dynamic transcriptome at the single-cell level in living organism and holds great promise for biomedical applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dyna-vivo-seq unveils cellular RNA dynamics during acute kidney injury via in vivo metabolic RNA labeling-based scRNA-seq\",\"authors\":\"Kun Yin, Yiling Xu, Ye Guo, Zhong Zheng, Xinrui Lin, Meijuan Zhao, He Dong, Dianyi Liang, Zhi Zhu, Junhua Zheng, Shichao Lin, Jia Song, Chaoyong Yang\",\"doi\":\"10.1038/s41467-024-54202-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A fundamental objective of genomics is to track variations in gene expression program. While metabolic RNA labeling-based single-cell RNA sequencing offers insights into temporal biological processes, its limited applicability only to in vitro models challenges the study of in vivo gene expression dynamics. Herein, we introduce Dyna-vivo-seq, a strategy that enables time-resolved dynamic transcription profiling in vivo at the single-cell level by examining new and old RNAs. The new RNAs can offer an additional dimension to reveal cellular heterogeneity. Leveraging new RNAs, we discern two distinct high and low metabolic labeling populations among proximal tubular (PT) cells. Furthermore, we identify 90 rapidly responding transcription factors during the acute kidney injury in female mice, highlighting that high metabolic labeling PT cells exhibit heightened susceptibility to injury. Dyna-vivo-seq provides a powerful tool for the characterization of dynamic transcriptome at the single-cell level in living organism and holds great promise for biomedical applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54202-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54202-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Dyna-vivo-seq unveils cellular RNA dynamics during acute kidney injury via in vivo metabolic RNA labeling-based scRNA-seq
A fundamental objective of genomics is to track variations in gene expression program. While metabolic RNA labeling-based single-cell RNA sequencing offers insights into temporal biological processes, its limited applicability only to in vitro models challenges the study of in vivo gene expression dynamics. Herein, we introduce Dyna-vivo-seq, a strategy that enables time-resolved dynamic transcription profiling in vivo at the single-cell level by examining new and old RNAs. The new RNAs can offer an additional dimension to reveal cellular heterogeneity. Leveraging new RNAs, we discern two distinct high and low metabolic labeling populations among proximal tubular (PT) cells. Furthermore, we identify 90 rapidly responding transcription factors during the acute kidney injury in female mice, highlighting that high metabolic labeling PT cells exhibit heightened susceptibility to injury. Dyna-vivo-seq provides a powerful tool for the characterization of dynamic transcriptome at the single-cell level in living organism and holds great promise for biomedical applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.