Weihan Li;Zongyang Zhang;Yanpei Guo;Sherman S. M. Chow;Zhiguo Wan
{"title":"基于哈希值的简明任意范围证明","authors":"Weihan Li;Zongyang Zhang;Yanpei Guo;Sherman S. M. Chow;Zhiguo Wan","doi":"10.1109/TIFS.2024.3497806","DOIUrl":null,"url":null,"abstract":"Zero-knowledge range proof (ZKRP) asserts that a committed integer \n<italic>V</i>\n lies in a given range like \n<inline-formula> <tex-math>$[{0, 2^{n}-1}]$ </tex-math></inline-formula>\n without other leakages of \n<italic>V</i>\n. It is vital in various privacy-preserving systems. Moving forward, the quest for post-quantum security is still in its infancy; the proof size of state-of-the-art lattice-based ZKRP (Lyubashevsky et al., CCS 20 and Couteau et al., Eurocrypt 21) remains linear in \n<italic>n</i>\n, directly impacting the long-term sustainability in applications such as immutable ledgers. Confronting this unresolved impasse, we propose SHARP-PQ, \n<italic>i.e.</i>\n, succinct hash-based arbitrary-range proof with post-quantum security. SHARP-PQ offers proof size poly-logarithmic to \n<italic>n</i>\n, optimized batch proofs, and versatile (new) capabilities. Its success stems from the improved inner product argument and exploitation of homomorphism. Empirically, SHARP-PQ features at least \n<inline-formula> <tex-math>$10\\times $ </tex-math></inline-formula>\n smaller proof size for multiple ranges over lattice-based ZKRPs while maintaining competitive prover and verifier times. SHARP-PQ also outperforms ZKRPs directly constructed from hash-based generic zero-knowledge proofs at most \n<inline-formula> <tex-math>$10 \\times $ </tex-math></inline-formula>\n.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"145-158"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Succinct Hash-Based Arbitrary-Range Proofs\",\"authors\":\"Weihan Li;Zongyang Zhang;Yanpei Guo;Sherman S. M. Chow;Zhiguo Wan\",\"doi\":\"10.1109/TIFS.2024.3497806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-knowledge range proof (ZKRP) asserts that a committed integer \\n<italic>V</i>\\n lies in a given range like \\n<inline-formula> <tex-math>$[{0, 2^{n}-1}]$ </tex-math></inline-formula>\\n without other leakages of \\n<italic>V</i>\\n. It is vital in various privacy-preserving systems. Moving forward, the quest for post-quantum security is still in its infancy; the proof size of state-of-the-art lattice-based ZKRP (Lyubashevsky et al., CCS 20 and Couteau et al., Eurocrypt 21) remains linear in \\n<italic>n</i>\\n, directly impacting the long-term sustainability in applications such as immutable ledgers. Confronting this unresolved impasse, we propose SHARP-PQ, \\n<italic>i.e.</i>\\n, succinct hash-based arbitrary-range proof with post-quantum security. SHARP-PQ offers proof size poly-logarithmic to \\n<italic>n</i>\\n, optimized batch proofs, and versatile (new) capabilities. Its success stems from the improved inner product argument and exploitation of homomorphism. Empirically, SHARP-PQ features at least \\n<inline-formula> <tex-math>$10\\\\times $ </tex-math></inline-formula>\\n smaller proof size for multiple ranges over lattice-based ZKRPs while maintaining competitive prover and verifier times. SHARP-PQ also outperforms ZKRPs directly constructed from hash-based generic zero-knowledge proofs at most \\n<inline-formula> <tex-math>$10 \\\\times $ </tex-math></inline-formula>\\n.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"145-158\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752637/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752637/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
零知识范围证明(Zero-knowledge range proof, ZKRP)断言一个提交的整数V位于一个给定的范围内,如$[{0,2 ^{n}-1}]$,没有其他V的泄漏。它在各种隐私保护系统中至关重要。展望未来,对后量子安全的追求仍处于起步阶段;最先进的基于格子的ZKRP (Lyubashevsky等人,CCS 20和Couteau等人,Eurocrypt 21)的证明大小在n中保持线性,直接影响不可变分类帐等应用的长期可持续性。面对这个尚未解决的僵局,我们提出了SHARP-PQ,即简洁的基于哈希的任意范围证明,具有后量子安全性。SHARP-PQ提供证明大小多对数到n,优化的批证明,和多功能(新)功能。它的成功源于对内积论证的改进和对同态的利用。根据经验,SHARP-PQ在多个范围内的证明尺寸比基于格子的ZKRPs至少小10倍,同时保持有竞争力的证明者和验证者时间。SHARP-PQ也比直接从基于哈希的通用零知识证明构建的ZKRPs性能最高为$10 \times $。
Zero-knowledge range proof (ZKRP) asserts that a committed integer
V
lies in a given range like
$[{0, 2^{n}-1}]$
without other leakages of
V
. It is vital in various privacy-preserving systems. Moving forward, the quest for post-quantum security is still in its infancy; the proof size of state-of-the-art lattice-based ZKRP (Lyubashevsky et al., CCS 20 and Couteau et al., Eurocrypt 21) remains linear in
n
, directly impacting the long-term sustainability in applications such as immutable ledgers. Confronting this unresolved impasse, we propose SHARP-PQ,
i.e.
, succinct hash-based arbitrary-range proof with post-quantum security. SHARP-PQ offers proof size poly-logarithmic to
n
, optimized batch proofs, and versatile (new) capabilities. Its success stems from the improved inner product argument and exploitation of homomorphism. Empirically, SHARP-PQ features at least
$10\times $
smaller proof size for multiple ranges over lattice-based ZKRPs while maintaining competitive prover and verifier times. SHARP-PQ also outperforms ZKRPs directly constructed from hash-based generic zero-knowledge proofs at most
$10 \times $
.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features