基于哈希值的简明任意范围证明

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2024-11-13 DOI:10.1109/TIFS.2024.3497806
Weihan Li;Zongyang Zhang;Yanpei Guo;Sherman S. M. Chow;Zhiguo Wan
{"title":"基于哈希值的简明任意范围证明","authors":"Weihan Li;Zongyang Zhang;Yanpei Guo;Sherman S. M. Chow;Zhiguo Wan","doi":"10.1109/TIFS.2024.3497806","DOIUrl":null,"url":null,"abstract":"Zero-knowledge range proof (ZKRP) asserts that a committed integer \n<italic>V</i>\n lies in a given range like \n<inline-formula> <tex-math>$[{0, 2^{n}-1}]$ </tex-math></inline-formula>\n without other leakages of \n<italic>V</i>\n. It is vital in various privacy-preserving systems. Moving forward, the quest for post-quantum security is still in its infancy; the proof size of state-of-the-art lattice-based ZKRP (Lyubashevsky et al., CCS 20 and Couteau et al., Eurocrypt 21) remains linear in \n<italic>n</i>\n, directly impacting the long-term sustainability in applications such as immutable ledgers. Confronting this unresolved impasse, we propose SHARP-PQ, \n<italic>i.e.</i>\n, succinct hash-based arbitrary-range proof with post-quantum security. SHARP-PQ offers proof size poly-logarithmic to \n<italic>n</i>\n, optimized batch proofs, and versatile (new) capabilities. Its success stems from the improved inner product argument and exploitation of homomorphism. Empirically, SHARP-PQ features at least \n<inline-formula> <tex-math>$10\\times $ </tex-math></inline-formula>\n smaller proof size for multiple ranges over lattice-based ZKRPs while maintaining competitive prover and verifier times. SHARP-PQ also outperforms ZKRPs directly constructed from hash-based generic zero-knowledge proofs at most \n<inline-formula> <tex-math>$10 \\times $ </tex-math></inline-formula>\n.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"145-158"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Succinct Hash-Based Arbitrary-Range Proofs\",\"authors\":\"Weihan Li;Zongyang Zhang;Yanpei Guo;Sherman S. M. Chow;Zhiguo Wan\",\"doi\":\"10.1109/TIFS.2024.3497806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-knowledge range proof (ZKRP) asserts that a committed integer \\n<italic>V</i>\\n lies in a given range like \\n<inline-formula> <tex-math>$[{0, 2^{n}-1}]$ </tex-math></inline-formula>\\n without other leakages of \\n<italic>V</i>\\n. It is vital in various privacy-preserving systems. Moving forward, the quest for post-quantum security is still in its infancy; the proof size of state-of-the-art lattice-based ZKRP (Lyubashevsky et al., CCS 20 and Couteau et al., Eurocrypt 21) remains linear in \\n<italic>n</i>\\n, directly impacting the long-term sustainability in applications such as immutable ledgers. Confronting this unresolved impasse, we propose SHARP-PQ, \\n<italic>i.e.</i>\\n, succinct hash-based arbitrary-range proof with post-quantum security. SHARP-PQ offers proof size poly-logarithmic to \\n<italic>n</i>\\n, optimized batch proofs, and versatile (new) capabilities. Its success stems from the improved inner product argument and exploitation of homomorphism. Empirically, SHARP-PQ features at least \\n<inline-formula> <tex-math>$10\\\\times $ </tex-math></inline-formula>\\n smaller proof size for multiple ranges over lattice-based ZKRPs while maintaining competitive prover and verifier times. SHARP-PQ also outperforms ZKRPs directly constructed from hash-based generic zero-knowledge proofs at most \\n<inline-formula> <tex-math>$10 \\\\times $ </tex-math></inline-formula>\\n.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"145-158\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752637/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752637/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

零知识范围证明(Zero-knowledge range proof, ZKRP)断言一个提交的整数V位于一个给定的范围内,如$[{0,2 ^{n}-1}]$,没有其他V的泄漏。它在各种隐私保护系统中至关重要。展望未来,对后量子安全的追求仍处于起步阶段;最先进的基于格子的ZKRP (Lyubashevsky等人,CCS 20和Couteau等人,Eurocrypt 21)的证明大小在n中保持线性,直接影响不可变分类帐等应用的长期可持续性。面对这个尚未解决的僵局,我们提出了SHARP-PQ,即简洁的基于哈希的任意范围证明,具有后量子安全性。SHARP-PQ提供证明大小多对数到n,优化的批证明,和多功能(新)功能。它的成功源于对内积论证的改进和对同态的利用。根据经验,SHARP-PQ在多个范围内的证明尺寸比基于格子的ZKRPs至少小10倍,同时保持有竞争力的证明者和验证者时间。SHARP-PQ也比直接从基于哈希的通用零知识证明构建的ZKRPs性能最高为$10 \times $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Succinct Hash-Based Arbitrary-Range Proofs
Zero-knowledge range proof (ZKRP) asserts that a committed integer V lies in a given range like $[{0, 2^{n}-1}]$ without other leakages of V . It is vital in various privacy-preserving systems. Moving forward, the quest for post-quantum security is still in its infancy; the proof size of state-of-the-art lattice-based ZKRP (Lyubashevsky et al., CCS 20 and Couteau et al., Eurocrypt 21) remains linear in n , directly impacting the long-term sustainability in applications such as immutable ledgers. Confronting this unresolved impasse, we propose SHARP-PQ, i.e. , succinct hash-based arbitrary-range proof with post-quantum security. SHARP-PQ offers proof size poly-logarithmic to n , optimized batch proofs, and versatile (new) capabilities. Its success stems from the improved inner product argument and exploitation of homomorphism. Empirically, SHARP-PQ features at least $10\times $ smaller proof size for multiple ranges over lattice-based ZKRPs while maintaining competitive prover and verifier times. SHARP-PQ also outperforms ZKRPs directly constructed from hash-based generic zero-knowledge proofs at most $10 \times $ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
ASDroid: Resisting Evolving Android Malware With API Clusters Derived From Source Code Advancing Visible-Infrared Person Re-Identification: Synergizing Visual-Textual Reasoning and Cross-Modal Feature Alignment Bi-Stream Coteaching Network for Weakly-Supervised Deepfake Localization in Videos On the Impact of Warden Collusion on Covert Communication in Wireless Networks Lightweight and Dynamic Privacy-Preserving Federated Learning via Functional Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1