Mariya Antony John Felix , Chandini Ragumoorthy , Tse-Wei Chen , Shen-Ming Chen , G. Kiruthiga , Abhishek Singh , Karen Ghazaryan , Amal M. Al-Mohaimeed , Mohamed S. Elshikh
{"title":"利用稀土铌酸盐装饰的功能化碳纳米纤维传感器平台进行环境污染物盐酸莫西沙星的流体特异性检测","authors":"Mariya Antony John Felix , Chandini Ragumoorthy , Tse-Wei Chen , Shen-Ming Chen , G. Kiruthiga , Abhishek Singh , Karen Ghazaryan , Amal M. Al-Mohaimeed , Mohamed S. Elshikh","doi":"10.1016/j.envres.2024.120349","DOIUrl":null,"url":null,"abstract":"<div><div>The development of precise and efficient detection methods is essential for the real-time monitoring of antibiotics, especially in environmental and biological matrices. This study aims to address this challenge by introducing a novel electrochemical sensor for the targeted detection of moxifloxacin hydrochloride (MFN), a fourth-generation fluoroquinolone. The sensor is based on a holmium niobate (HNO) and functionalized carbon nanofiber (f-CNF) nanocomposite, synthesized via a hydrothermal approach and subsequently characterized for its structural and electrochemical properties. When deposited onto a glassy carbon electrode (GCE), the HNO/f-CNF nanocomposite demonstrated exceptional electrochemical performance, as assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The sensor exhibited remarkable sensitivity, with a detection limit of 0.034 μM, a quantification limit of 0.11 μM, and a sensitivity of 0.69 μA μM<sup>−1</sup> cm<sup>−2</sup>. It also achieved a broad linear detection range from 0.001 μM to 1166.11 μM, making it highly effective for MFN detection across various complex matrices, including environmental waters, biological fluids, and artificial saliva, with recovery rates between 98.15% and 101.75%. The novelty of this work lies in the unique combination of HNO's catalytic properties and f-CNF's enhanced electron transport, establishing a highly selective and sensitive platform for MFN detection. This sensor not only advances the field of electrochemical sensing but also offers a promising tool for real-time environmental and pharmaceutical monitoring.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"264 ","pages":"Article 120349"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid-specific detection of environmental pollutant moxifloxacin hydrochloride utilizing a rare-earth niobate decorated functionalized carbon nanofiber sensor platform\",\"authors\":\"Mariya Antony John Felix , Chandini Ragumoorthy , Tse-Wei Chen , Shen-Ming Chen , G. Kiruthiga , Abhishek Singh , Karen Ghazaryan , Amal M. Al-Mohaimeed , Mohamed S. Elshikh\",\"doi\":\"10.1016/j.envres.2024.120349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of precise and efficient detection methods is essential for the real-time monitoring of antibiotics, especially in environmental and biological matrices. This study aims to address this challenge by introducing a novel electrochemical sensor for the targeted detection of moxifloxacin hydrochloride (MFN), a fourth-generation fluoroquinolone. The sensor is based on a holmium niobate (HNO) and functionalized carbon nanofiber (f-CNF) nanocomposite, synthesized via a hydrothermal approach and subsequently characterized for its structural and electrochemical properties. When deposited onto a glassy carbon electrode (GCE), the HNO/f-CNF nanocomposite demonstrated exceptional electrochemical performance, as assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The sensor exhibited remarkable sensitivity, with a detection limit of 0.034 μM, a quantification limit of 0.11 μM, and a sensitivity of 0.69 μA μM<sup>−1</sup> cm<sup>−2</sup>. It also achieved a broad linear detection range from 0.001 μM to 1166.11 μM, making it highly effective for MFN detection across various complex matrices, including environmental waters, biological fluids, and artificial saliva, with recovery rates between 98.15% and 101.75%. The novelty of this work lies in the unique combination of HNO's catalytic properties and f-CNF's enhanced electron transport, establishing a highly selective and sensitive platform for MFN detection. This sensor not only advances the field of electrochemical sensing but also offers a promising tool for real-time environmental and pharmaceutical monitoring.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"264 \",\"pages\":\"Article 120349\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124022564\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124022564","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Fluid-specific detection of environmental pollutant moxifloxacin hydrochloride utilizing a rare-earth niobate decorated functionalized carbon nanofiber sensor platform
The development of precise and efficient detection methods is essential for the real-time monitoring of antibiotics, especially in environmental and biological matrices. This study aims to address this challenge by introducing a novel electrochemical sensor for the targeted detection of moxifloxacin hydrochloride (MFN), a fourth-generation fluoroquinolone. The sensor is based on a holmium niobate (HNO) and functionalized carbon nanofiber (f-CNF) nanocomposite, synthesized via a hydrothermal approach and subsequently characterized for its structural and electrochemical properties. When deposited onto a glassy carbon electrode (GCE), the HNO/f-CNF nanocomposite demonstrated exceptional electrochemical performance, as assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The sensor exhibited remarkable sensitivity, with a detection limit of 0.034 μM, a quantification limit of 0.11 μM, and a sensitivity of 0.69 μA μM−1 cm−2. It also achieved a broad linear detection range from 0.001 μM to 1166.11 μM, making it highly effective for MFN detection across various complex matrices, including environmental waters, biological fluids, and artificial saliva, with recovery rates between 98.15% and 101.75%. The novelty of this work lies in the unique combination of HNO's catalytic properties and f-CNF's enhanced electron transport, establishing a highly selective and sensitive platform for MFN detection. This sensor not only advances the field of electrochemical sensing but also offers a promising tool for real-time environmental and pharmaceutical monitoring.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.