{"title":"建立用于染料废水处理的鲁棒性氧化锌-海藻酸钠纳米复合材料:表征、RSM 方法和机理评估。","authors":"Fatemeh Maloofi, Ahmad Dadvand Koohi","doi":"10.1007/s11356-024-35500-2","DOIUrl":null,"url":null,"abstract":"<p><p>In today's world, water is a highly valued resource, and enhancing the quality of this natural endowment is a significant concern and a worldwide endeavor. This study sought to purify real wastewater and water tainted with methylene blue (MB) by immobilizing ZnO nanoparticles onto an alginate matrix using a straightforward approach and a three-dimensional structure. After analyzing the impact of <math> <mrow><msub><mtext>H</mtext> <mn>2</mn></msub> <msub><mtext>O</mtext> <mn>2</mn></msub> </mrow> </math> , it was determined that 93.84% of MB was successfully removed (time = 120 min, dye concentration = 15 mg/L, catalyst amount = 2.5 g). The effects of inorganic ions and water types were investigated to simulate real wastewater conditions, and the catalyst performed satisfactorily. Alginate played a significant role in selectively removing dye, and the catalyst effectively removed 80.36% of MB and, in contrast, 20% of methyl orange (MO). The practical application of the catalyst was evaluated in textile wastewater treatment, and the catalyst showed satisfactory performance. An average 2.49% reduction in dye removal was observed after five stages of using the catalyst, demonstrating the beads' excellent stability. The composites were subjected to free radical trapping experiments to ascertain the active species. According to the results, <math> <msup><mrow><mtext>h</mtext></mrow> <mo>+</mo></msup> </math> and <math><mrow><mo>·</mo> <mtext>OH</mtext></mrow> </math> acted as the main reaction species in the degradation of MB. At the end, the synergistic mechanism of adsorption and degradation in MB removal was presented.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing robust ZnO-sodium alginate nanocomposite for dye wastewater treatment: characterization, RSM methodology, and mechanism evaluation.\",\"authors\":\"Fatemeh Maloofi, Ahmad Dadvand Koohi\",\"doi\":\"10.1007/s11356-024-35500-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In today's world, water is a highly valued resource, and enhancing the quality of this natural endowment is a significant concern and a worldwide endeavor. This study sought to purify real wastewater and water tainted with methylene blue (MB) by immobilizing ZnO nanoparticles onto an alginate matrix using a straightforward approach and a three-dimensional structure. After analyzing the impact of <math> <mrow><msub><mtext>H</mtext> <mn>2</mn></msub> <msub><mtext>O</mtext> <mn>2</mn></msub> </mrow> </math> , it was determined that 93.84% of MB was successfully removed (time = 120 min, dye concentration = 15 mg/L, catalyst amount = 2.5 g). The effects of inorganic ions and water types were investigated to simulate real wastewater conditions, and the catalyst performed satisfactorily. Alginate played a significant role in selectively removing dye, and the catalyst effectively removed 80.36% of MB and, in contrast, 20% of methyl orange (MO). The practical application of the catalyst was evaluated in textile wastewater treatment, and the catalyst showed satisfactory performance. An average 2.49% reduction in dye removal was observed after five stages of using the catalyst, demonstrating the beads' excellent stability. The composites were subjected to free radical trapping experiments to ascertain the active species. According to the results, <math> <msup><mrow><mtext>h</mtext></mrow> <mo>+</mo></msup> </math> and <math><mrow><mo>·</mo> <mtext>OH</mtext></mrow> </math> acted as the main reaction species in the degradation of MB. At the end, the synergistic mechanism of adsorption and degradation in MB removal was presented.</p>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11356-024-35500-2\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35500-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Establishing robust ZnO-sodium alginate nanocomposite for dye wastewater treatment: characterization, RSM methodology, and mechanism evaluation.
In today's world, water is a highly valued resource, and enhancing the quality of this natural endowment is a significant concern and a worldwide endeavor. This study sought to purify real wastewater and water tainted with methylene blue (MB) by immobilizing ZnO nanoparticles onto an alginate matrix using a straightforward approach and a three-dimensional structure. After analyzing the impact of , it was determined that 93.84% of MB was successfully removed (time = 120 min, dye concentration = 15 mg/L, catalyst amount = 2.5 g). The effects of inorganic ions and water types were investigated to simulate real wastewater conditions, and the catalyst performed satisfactorily. Alginate played a significant role in selectively removing dye, and the catalyst effectively removed 80.36% of MB and, in contrast, 20% of methyl orange (MO). The practical application of the catalyst was evaluated in textile wastewater treatment, and the catalyst showed satisfactory performance. An average 2.49% reduction in dye removal was observed after five stages of using the catalyst, demonstrating the beads' excellent stability. The composites were subjected to free radical trapping experiments to ascertain the active species. According to the results, and acted as the main reaction species in the degradation of MB. At the end, the synergistic mechanism of adsorption and degradation in MB removal was presented.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.