{"title":"随着时间的推移,恢复原油污染生态系统的先锋技术:综述。","authors":"Netra Prova Baruah, Manisha Goswami, Nimisha Sarma, Devasish Chowdhury, Arundhuti Devi","doi":"10.1007/s11356-024-35442-9","DOIUrl":null,"url":null,"abstract":"<p><p>The unremitting pollution of our environment induced by crude oil spillage and drilling site accidents has jeopardized every living species in the biological ecosystem. Removing heavy crude oil constituents with the help of traditional and mainstream oil sorbents because of their ingrained raised viscosities is a strenuous venture. Lighter distillates of crude oil, like condensate, do not aggregate with tremulous shine on the aquatic surface nor settle at the bottom sediment of the water bodies like the heavier components do with time. Fabricating optimally designed materials capable of capturing, degrading, or removing toxic chemical constituents of this fossil fuel is critical in this modern era. This review comprehensively discusses the evolution of scientific technologies developed to separate these constituents from land and aquatic bodies. We provide an overview of the latest physical and chemical strategies and prevalent biological remediation schemes for removing these pollutants from soils and water for environmental protection. The article highlights the urgency of preventing oil spill accidents, whose anticipation is challenging to harness. A spectrum of advanced functional methodologies is also discussed to adequately treat discharged hydrocarbon contaminants, establish public safety, and pave the path to enhancing the circular economy metrics linked with oil industries.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pioneering technologies over time to rehabilitate crude oil-contaminated ecosystems: a review.\",\"authors\":\"Netra Prova Baruah, Manisha Goswami, Nimisha Sarma, Devasish Chowdhury, Arundhuti Devi\",\"doi\":\"10.1007/s11356-024-35442-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The unremitting pollution of our environment induced by crude oil spillage and drilling site accidents has jeopardized every living species in the biological ecosystem. Removing heavy crude oil constituents with the help of traditional and mainstream oil sorbents because of their ingrained raised viscosities is a strenuous venture. Lighter distillates of crude oil, like condensate, do not aggregate with tremulous shine on the aquatic surface nor settle at the bottom sediment of the water bodies like the heavier components do with time. Fabricating optimally designed materials capable of capturing, degrading, or removing toxic chemical constituents of this fossil fuel is critical in this modern era. This review comprehensively discusses the evolution of scientific technologies developed to separate these constituents from land and aquatic bodies. We provide an overview of the latest physical and chemical strategies and prevalent biological remediation schemes for removing these pollutants from soils and water for environmental protection. The article highlights the urgency of preventing oil spill accidents, whose anticipation is challenging to harness. A spectrum of advanced functional methodologies is also discussed to adequately treat discharged hydrocarbon contaminants, establish public safety, and pave the path to enhancing the circular economy metrics linked with oil industries.</p>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11356-024-35442-9\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35442-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Pioneering technologies over time to rehabilitate crude oil-contaminated ecosystems: a review.
The unremitting pollution of our environment induced by crude oil spillage and drilling site accidents has jeopardized every living species in the biological ecosystem. Removing heavy crude oil constituents with the help of traditional and mainstream oil sorbents because of their ingrained raised viscosities is a strenuous venture. Lighter distillates of crude oil, like condensate, do not aggregate with tremulous shine on the aquatic surface nor settle at the bottom sediment of the water bodies like the heavier components do with time. Fabricating optimally designed materials capable of capturing, degrading, or removing toxic chemical constituents of this fossil fuel is critical in this modern era. This review comprehensively discusses the evolution of scientific technologies developed to separate these constituents from land and aquatic bodies. We provide an overview of the latest physical and chemical strategies and prevalent biological remediation schemes for removing these pollutants from soils and water for environmental protection. The article highlights the urgency of preventing oil spill accidents, whose anticipation is challenging to harness. A spectrum of advanced functional methodologies is also discussed to adequately treat discharged hydrocarbon contaminants, establish public safety, and pave the path to enhancing the circular economy metrics linked with oil industries.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.