用低功率量子光成像脑组织。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2024-11-13 DOI:10.1021/acs.jpcb.4c03225
O Varnavski, P Johnson, T Liu, D Pal, G A Mashour, T Goodson
{"title":"用低功率量子光成像脑组织。","authors":"O Varnavski, P Johnson, T Liu, D Pal, G A Mashour, T Goodson","doi":"10.1021/acs.jpcb.4c03225","DOIUrl":null,"url":null,"abstract":"<p><p>Light-induced tissue damage is a crucial limitation for traditional microscopy of the living brain, underscoring the need for new techniques that minimize exposure of samples to light. Here, we tested the hypothesis that quantum light, i.e., entangled photons, could detect brain structures at a lower excitation energy. In a proof of principle, we show microscopic images of fixed brain tissue in the hippocampus area created by fluorescence selective excitation in the process of entangled two-photon absorption in a scanning microscope. Quantum-enhanced entangled two-photon microscopy (TPM) had brain imaging capabilities at an unprecedented low excitation intensity of ∼3.6 × 10<sup>7</sup> photons/s, orders of magnitude lower than the excitation level for the classical two-photon fluorescence image obtained in the same microscope. The extremely low light probe intensity demonstrated in entangled TPM is of critical importance in the investigation of neural activity to minimize heating and photobleaching during repetitive imaging. It may have important functional implications in optogenetic technology, removing unintended heating and accumulated photodamage effects. This technology also opens avenues in spatially resolved brain tissue investigations with quantum light, providing new capabilities in local spectroscopy.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging Brain Tissue with Quantum Light at Low Power.\",\"authors\":\"O Varnavski, P Johnson, T Liu, D Pal, G A Mashour, T Goodson\",\"doi\":\"10.1021/acs.jpcb.4c03225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Light-induced tissue damage is a crucial limitation for traditional microscopy of the living brain, underscoring the need for new techniques that minimize exposure of samples to light. Here, we tested the hypothesis that quantum light, i.e., entangled photons, could detect brain structures at a lower excitation energy. In a proof of principle, we show microscopic images of fixed brain tissue in the hippocampus area created by fluorescence selective excitation in the process of entangled two-photon absorption in a scanning microscope. Quantum-enhanced entangled two-photon microscopy (TPM) had brain imaging capabilities at an unprecedented low excitation intensity of ∼3.6 × 10<sup>7</sup> photons/s, orders of magnitude lower than the excitation level for the classical two-photon fluorescence image obtained in the same microscope. The extremely low light probe intensity demonstrated in entangled TPM is of critical importance in the investigation of neural activity to minimize heating and photobleaching during repetitive imaging. It may have important functional implications in optogenetic technology, removing unintended heating and accumulated photodamage effects. This technology also opens avenues in spatially resolved brain tissue investigations with quantum light, providing new capabilities in local spectroscopy.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c03225\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c03225","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光引起的组织损伤是传统活体大脑显微镜的一个重要限制,这就强调了对能最大限度减少样本受光照射的新技术的需求。在这里,我们测试了量子光(即纠缠光子)可以在较低激发能量下探测大脑结构的假设。在原理验证中,我们展示了在扫描显微镜下,通过纠缠双光子吸收过程中的荧光选择性激发所产生的海马区固定脑组织的显微图像。量子增强纠缠双光子显微镜(TPM)具有前所未有的低激发强度(3.6 × 107 光子/秒)脑成像能力,比在同一显微镜中获得的经典双光子荧光图像的激发水平低几个数量级。在纠缠 TPM 中显示的极低光探针强度对于研究神经活动以尽量减少重复成像过程中的加热和光漂白至关重要。它可能对光遗传技术具有重要的功能影响,可消除意外加热和累积光损伤效应。这项技术还为利用量子光进行空间分辨脑组织研究开辟了道路,为局部光谱学提供了新的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Imaging Brain Tissue with Quantum Light at Low Power.

Light-induced tissue damage is a crucial limitation for traditional microscopy of the living brain, underscoring the need for new techniques that minimize exposure of samples to light. Here, we tested the hypothesis that quantum light, i.e., entangled photons, could detect brain structures at a lower excitation energy. In a proof of principle, we show microscopic images of fixed brain tissue in the hippocampus area created by fluorescence selective excitation in the process of entangled two-photon absorption in a scanning microscope. Quantum-enhanced entangled two-photon microscopy (TPM) had brain imaging capabilities at an unprecedented low excitation intensity of ∼3.6 × 107 photons/s, orders of magnitude lower than the excitation level for the classical two-photon fluorescence image obtained in the same microscope. The extremely low light probe intensity demonstrated in entangled TPM is of critical importance in the investigation of neural activity to minimize heating and photobleaching during repetitive imaging. It may have important functional implications in optogenetic technology, removing unintended heating and accumulated photodamage effects. This technology also opens avenues in spatially resolved brain tissue investigations with quantum light, providing new capabilities in local spectroscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
How Rigid Are Anthranilamide Molecular Electrets? Diffusion and Viscosity in Mixed Protein Solutions. Hydrogen Bonding and Noncovalent Electric Field Effects in the Photoconversion of a Phytochrome. Modeling and NMR Data Elucidate the Structure of a G-Quadruplex-Ligand Interaction for a Pu22T-Cyclometalated Iridium(III) System. Nature of the EWS-FLI1 Oncoprotein.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1