Shiyao Hong, Astrid Schnetzer, Nathalie Lavoine, Lucian Lucia, David B Eggleston
{"title":"利用沿海海洋鳞栉水母创新环境可持续材料平台。","authors":"Shiyao Hong, Astrid Schnetzer, Nathalie Lavoine, Lucian Lucia, David B Eggleston","doi":"10.1002/cssc.202401024","DOIUrl":null,"url":null,"abstract":"<p><p>The most influential technological innovations and societal progress lie at the intersection of scientific disciplines. Today, more than ever, biology assumes a more central and participatory role at this confluence. Within the context of this scientific inter-disciplinarity, the current effort was undertaken to explore the ecology of invasive tunicates, marine invertebrates increasingly considered a nuisance to the ecology of coastal ecosystems, yet potentially a resource for diverse applications in materials chemistry, construction, composites, and engineering. The intention of this perspective is to stimulate conversation and discussion with respect to benthic tunicates, a valuable yet underappreciated biological resource, which can be converted to cellulose nanocrystals, one of the most important bio-based materials sourced today. It will also attempt to consolidate current understandings of the ecology of tunicates and how potential material exploitation can be mutually compatible and compliant with efforts to protect coastal ecosystems and aquaculture which are currently inundated or threatened by invasive tunicates.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401024"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovating Environmentally Sustainable Materials Platforms by Harnessing Coastal Marine Tunicates.\",\"authors\":\"Shiyao Hong, Astrid Schnetzer, Nathalie Lavoine, Lucian Lucia, David B Eggleston\",\"doi\":\"10.1002/cssc.202401024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The most influential technological innovations and societal progress lie at the intersection of scientific disciplines. Today, more than ever, biology assumes a more central and participatory role at this confluence. Within the context of this scientific inter-disciplinarity, the current effort was undertaken to explore the ecology of invasive tunicates, marine invertebrates increasingly considered a nuisance to the ecology of coastal ecosystems, yet potentially a resource for diverse applications in materials chemistry, construction, composites, and engineering. The intention of this perspective is to stimulate conversation and discussion with respect to benthic tunicates, a valuable yet underappreciated biological resource, which can be converted to cellulose nanocrystals, one of the most important bio-based materials sourced today. It will also attempt to consolidate current understandings of the ecology of tunicates and how potential material exploitation can be mutually compatible and compliant with efforts to protect coastal ecosystems and aquaculture which are currently inundated or threatened by invasive tunicates.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401024\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401024\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401024","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Innovating Environmentally Sustainable Materials Platforms by Harnessing Coastal Marine Tunicates.
The most influential technological innovations and societal progress lie at the intersection of scientific disciplines. Today, more than ever, biology assumes a more central and participatory role at this confluence. Within the context of this scientific inter-disciplinarity, the current effort was undertaken to explore the ecology of invasive tunicates, marine invertebrates increasingly considered a nuisance to the ecology of coastal ecosystems, yet potentially a resource for diverse applications in materials chemistry, construction, composites, and engineering. The intention of this perspective is to stimulate conversation and discussion with respect to benthic tunicates, a valuable yet underappreciated biological resource, which can be converted to cellulose nanocrystals, one of the most important bio-based materials sourced today. It will also attempt to consolidate current understandings of the ecology of tunicates and how potential material exploitation can be mutually compatible and compliant with efforts to protect coastal ecosystems and aquaculture which are currently inundated or threatened by invasive tunicates.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology