发现一种抑制 IRE1α S-亚硝基化并在亚硝基胁迫下保护内质网应激反应的化合物

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2024-11-12 DOI:10.1021/acschembio.4c00403
Haruna Kurogi, Nobumasa Takasugi, Sho Kubota, Ashutosh Kumar, Takehiro Suzuki, Naoshi Dohmae, Daisuke Sawada, Kam Y J Zhang, Takashi Uehara
{"title":"发现一种抑制 IRE1α S-亚硝基化并在亚硝基胁迫下保护内质网应激反应的化合物","authors":"Haruna Kurogi, Nobumasa Takasugi, Sho Kubota, Ashutosh Kumar, Takehiro Suzuki, Naoshi Dohmae, Daisuke Sawada, Kam Y J Zhang, Takashi Uehara","doi":"10.1021/acschembio.4c00403","DOIUrl":null,"url":null,"abstract":"<p><p>Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes <i>S</i>-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, <i>S</i>-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the <i>S</i>-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the <i>S</i>-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified <i>S</i>-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of a Compound That Inhibits IRE1α <i>S</i>-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress.\",\"authors\":\"Haruna Kurogi, Nobumasa Takasugi, Sho Kubota, Ashutosh Kumar, Takehiro Suzuki, Naoshi Dohmae, Daisuke Sawada, Kam Y J Zhang, Takashi Uehara\",\"doi\":\"10.1021/acschembio.4c00403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes <i>S</i>-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, <i>S</i>-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the <i>S</i>-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the <i>S</i>-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified <i>S</i>-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00403\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00403","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肌醇需要酶 1α(IRE1α)是内质网(ER)应激的传感器,并驱动ER应激反应途径。活化的 IRE1α 具有 RNase 活性,能裂解编码 X-box 结合蛋白 1 的 mRNA,而 X-box 结合蛋白 1 是一种转录因子,能诱导维持 ER 蛋白稳态以促进细胞存活的基因的表达。此前,我们发现 IRE1α 会发生 S-亚硝基化,这是一氧化氮(NO)诱导的一种翻译后修饰,会导致 RNase 活性降低。因此,IRE1α的S-亚硝基化会损害细胞对ER应激的反应,使细胞变得更加脆弱。我们进行了虚拟筛选和基于细胞的验证实验,通过靶向亚硝基化半胱氨酸残基来鉴定抑制 IRE1α S-亚硝基化的化合物。我们最终确定了一种化合物(1ACTA),它能选择性地抑制 IRE1α 的 S-亚硝基化,并防止 NO 诱导的 RNase 活性降低。此外,1ACTA 还能降低 NO 诱导的细胞死亡率。我们的研究发现 S-亚硝基化是 IRE1α 药物开发的新靶点,并提供了一种合适的筛选策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress.

Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Fluorescent d-amino Acid-Based Approach Enabling Fast and Reliable Measure of Antibiotic Susceptibility in Bacterial Cells. Intracellular Photocatalytic Proximity Labeling (iPPL) for Dynamic Analysis of Chromatin-Binding Proteins Targeting Histone H3. Bioorthogonal Cyclopropenones for Investigating RNA Structure. Molecular Targeted Engagement of DPP9 in Rat Tissue Using CETSA, SP3 Processing, and Absolute Quantitation Mass Spectrometry. Interspecies Crosstalk via LuxI/LuxR-Type Quorum Sensing Pathways Contributes to Decreased Nematode Survival in Coinfections of Pseudomonas aeruginosa and Burkholderia multivorans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1