Hannah Weckel-Dahman, Ryan Carlsen, Jessica M J Swanson
{"title":"多尺度响应动力学建模:在不同电化学条件下量化生物分子反应通量。","authors":"Hannah Weckel-Dahman, Ryan Carlsen, Jessica M J Swanson","doi":"10.1021/acs.jctc.4c00872","DOIUrl":null,"url":null,"abstract":"<p><p>Attaining a complete thermodynamic and kinetic characterization for processes involving multiple interconnected rare-event transitions remains a central challenge in molecular biophysics. This challenge is amplified when the process must be understood under a range of reaction conditions. Herein, we present a novel condition-responsive kinetic modeling framework that can combine the strengths of bottom-up rate quantification from multiscale simulations with top-down solution refinement using both equilibrium and nonequilibrium experimental data. Although this framework can be applied to any process, we demonstrate its use for electrochemically driven transport through channels and transporters via the development of electrochemically responsive rates. Using the Cl<sup>-</sup>/H<sup>+</sup> antiporter ClC-ec1 as a model system, we show how optimal and predictive kinetic solutions can be obtained when the solution space is grounded by thermodynamic constraints, seeded through multiscale rate quantification, and further refined with experimental data, such as electrophysiology assays. Turning to the Shaker K<sup>+</sup> channel, we demonstrate that optimal solutions and biophysical insights can also be obtained with sufficient experimental data. This multi-pathway method also proves capable of identifying single-pathway dominant channel mechanisms but reveals that competing and off-pathway flux is still essential to replicate experimental findings and to describe concentration-dependent channel rectification.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Responsive Kinetic Modeling: Quantifying Biomolecular Reaction Flux under Varying Electrochemical Conditions.\",\"authors\":\"Hannah Weckel-Dahman, Ryan Carlsen, Jessica M J Swanson\",\"doi\":\"10.1021/acs.jctc.4c00872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attaining a complete thermodynamic and kinetic characterization for processes involving multiple interconnected rare-event transitions remains a central challenge in molecular biophysics. This challenge is amplified when the process must be understood under a range of reaction conditions. Herein, we present a novel condition-responsive kinetic modeling framework that can combine the strengths of bottom-up rate quantification from multiscale simulations with top-down solution refinement using both equilibrium and nonequilibrium experimental data. Although this framework can be applied to any process, we demonstrate its use for electrochemically driven transport through channels and transporters via the development of electrochemically responsive rates. Using the Cl<sup>-</sup>/H<sup>+</sup> antiporter ClC-ec1 as a model system, we show how optimal and predictive kinetic solutions can be obtained when the solution space is grounded by thermodynamic constraints, seeded through multiscale rate quantification, and further refined with experimental data, such as electrophysiology assays. Turning to the Shaker K<sup>+</sup> channel, we demonstrate that optimal solutions and biophysical insights can also be obtained with sufficient experimental data. This multi-pathway method also proves capable of identifying single-pathway dominant channel mechanisms but reveals that competing and off-pathway flux is still essential to replicate experimental findings and to describe concentration-dependent channel rectification.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00872\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00872","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Attaining a complete thermodynamic and kinetic characterization for processes involving multiple interconnected rare-event transitions remains a central challenge in molecular biophysics. This challenge is amplified when the process must be understood under a range of reaction conditions. Herein, we present a novel condition-responsive kinetic modeling framework that can combine the strengths of bottom-up rate quantification from multiscale simulations with top-down solution refinement using both equilibrium and nonequilibrium experimental data. Although this framework can be applied to any process, we demonstrate its use for electrochemically driven transport through channels and transporters via the development of electrochemically responsive rates. Using the Cl-/H+ antiporter ClC-ec1 as a model system, we show how optimal and predictive kinetic solutions can be obtained when the solution space is grounded by thermodynamic constraints, seeded through multiscale rate quantification, and further refined with experimental data, such as electrophysiology assays. Turning to the Shaker K+ channel, we demonstrate that optimal solutions and biophysical insights can also be obtained with sufficient experimental data. This multi-pathway method also proves capable of identifying single-pathway dominant channel mechanisms but reveals that competing and off-pathway flux is still essential to replicate experimental findings and to describe concentration-dependent channel rectification.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.