Qin-Chao Wang, Jingkun Zhang, Zhiyong Zeng, Zhaoquan Peng, Huilin Zang, Xiaoge Li, Chao Wang, Jie Han
{"title":"调整 P3 型 Na0.66Mn0.66Mg0.33O1.93 中的固有氧空位以增强氧氧化还原活性。","authors":"Qin-Chao Wang, Jingkun Zhang, Zhiyong Zeng, Zhaoquan Peng, Huilin Zang, Xiaoge Li, Chao Wang, Jie Han","doi":"10.1002/cssc.202401873","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating oxygen redox reactions with transition metal redox reactions offers a promising strategy to double or triple the energy density for large-capacity battery cathodes. In this study, we have introduced intrinsic oxygen vacancies (V<sub>O</sub>) into a P3 layered cathode to modulate the electronic structure of O atoms and enhance oxygen redox activity. Rietveld-refined X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy confirm the successful creation of V<sub>O</sub> in Na<sub>0.66</sub>Mn<sub>0.66</sub>Mg<sub>0.33</sub>O<sub>1.93</sub> (OV-NMM). Density functional theory (DFT) calculations reveal that V<sub>O</sub> in OV-NMM positively enhances the antibonding interaction between Mn and O, directing excess electrons from O holes toward adjacent Mn t<sub>2g</sub> and O 2p orbitals. This modification significantly improves the reversibility and accelerates Na<sup>+</sup> transport kinetics for O2<sup>-</sup>/O<sup>-</sup> redox reactions. Ex situ synchrotron-based XRD demonstrates that V<sub>O</sub> effectively eliminates the O3 phase, reduces Mg<sup>2+</sup> migration, and suppresses irreversible structural changes. XAS of Mn K-edge and O K-edge further illustrate the advantageous role of oxygen vacancies in facilitating oxygen redox reactions. These findings highlight the potential of defect engineering, particularly V<sub>O</sub>, to boost anionic redox activity for high-capacity energy storage applications.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401873"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Intrinsic Oxygen Vacancies in P3-Type Na<sub>0.66</sub>Mn<sub>0.66</sub>Mg<sub>0.33</sub>O<sub>1.93</sub> to Enhance Oxygen Redox Activity.\",\"authors\":\"Qin-Chao Wang, Jingkun Zhang, Zhiyong Zeng, Zhaoquan Peng, Huilin Zang, Xiaoge Li, Chao Wang, Jie Han\",\"doi\":\"10.1002/cssc.202401873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrating oxygen redox reactions with transition metal redox reactions offers a promising strategy to double or triple the energy density for large-capacity battery cathodes. In this study, we have introduced intrinsic oxygen vacancies (V<sub>O</sub>) into a P3 layered cathode to modulate the electronic structure of O atoms and enhance oxygen redox activity. Rietveld-refined X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy confirm the successful creation of V<sub>O</sub> in Na<sub>0.66</sub>Mn<sub>0.66</sub>Mg<sub>0.33</sub>O<sub>1.93</sub> (OV-NMM). Density functional theory (DFT) calculations reveal that V<sub>O</sub> in OV-NMM positively enhances the antibonding interaction between Mn and O, directing excess electrons from O holes toward adjacent Mn t<sub>2g</sub> and O 2p orbitals. This modification significantly improves the reversibility and accelerates Na<sup>+</sup> transport kinetics for O2<sup>-</sup>/O<sup>-</sup> redox reactions. Ex situ synchrotron-based XRD demonstrates that V<sub>O</sub> effectively eliminates the O3 phase, reduces Mg<sup>2+</sup> migration, and suppresses irreversible structural changes. XAS of Mn K-edge and O K-edge further illustrate the advantageous role of oxygen vacancies in facilitating oxygen redox reactions. These findings highlight the potential of defect engineering, particularly V<sub>O</sub>, to boost anionic redox activity for high-capacity energy storage applications.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401873\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401873\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401873","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
将氧氧化还原反应与过渡金属氧化还原反应相结合,是将大容量电池阴极能量密度提高两倍或三倍的可行策略。在这项研究中,我们在 P3 层状阴极中引入了本征氧空位 (VO),以调节 O 原子的电子结构并提高氧氧化还原活性。里特维尔德细化 X 射线衍射 (XRD)、X 射线吸收光谱 (XAS) 和 X 射线光电子能谱证实了在 Na0.66Mn0.66Mg0.33O1.93 (OV-NMM) 中成功生成了 VO。密度泛函理论(DFT)计算显示,OV-NMM 中的 VO 积极增强了 Mn 和 O 之间的反键相互作用,将 O 空穴中的多余电子引向相邻的 Mn t2g 和 O 2p 轨道。这种修饰大大提高了 O2-/O- 氧化还原反应的可逆性,并加快了 Na+ 的传输动力学。基于同步加速器的原位 XRD 显示,VO 有效地消除了 O3 相,减少了 Mg2+ 迁移,并抑制了不可逆的结构变化。Mn K-edge 和 O K-edge 的 XAS 进一步说明了氧空位在促进氧氧化还原反应中的有利作用。这些发现凸显了缺陷工程(尤其是 VO)在提高阴离子氧化还原活性以实现高容量储能应用方面的潜力。
Tailoring Intrinsic Oxygen Vacancies in P3-Type Na0.66Mn0.66Mg0.33O1.93 to Enhance Oxygen Redox Activity.
Integrating oxygen redox reactions with transition metal redox reactions offers a promising strategy to double or triple the energy density for large-capacity battery cathodes. In this study, we have introduced intrinsic oxygen vacancies (VO) into a P3 layered cathode to modulate the electronic structure of O atoms and enhance oxygen redox activity. Rietveld-refined X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy confirm the successful creation of VO in Na0.66Mn0.66Mg0.33O1.93 (OV-NMM). Density functional theory (DFT) calculations reveal that VO in OV-NMM positively enhances the antibonding interaction between Mn and O, directing excess electrons from O holes toward adjacent Mn t2g and O 2p orbitals. This modification significantly improves the reversibility and accelerates Na+ transport kinetics for O2-/O- redox reactions. Ex situ synchrotron-based XRD demonstrates that VO effectively eliminates the O3 phase, reduces Mg2+ migration, and suppresses irreversible structural changes. XAS of Mn K-edge and O K-edge further illustrate the advantageous role of oxygen vacancies in facilitating oxygen redox reactions. These findings highlight the potential of defect engineering, particularly VO, to boost anionic redox activity for high-capacity energy storage applications.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology