调整 P3 型 Na0.66Mn0.66Mg0.33O1.93 中的固有氧空位以增强氧氧化还原活性。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-11-10 DOI:10.1002/cssc.202401873
Qin-Chao Wang, Jingkun Zhang, Zhiyong Zeng, Zhaoquan Peng, Huilin Zang, Xiaoge Li, Chao Wang, Jie Han
{"title":"调整 P3 型 Na0.66Mn0.66Mg0.33O1.93 中的固有氧空位以增强氧氧化还原活性。","authors":"Qin-Chao Wang, Jingkun Zhang, Zhiyong Zeng, Zhaoquan Peng, Huilin Zang, Xiaoge Li, Chao Wang, Jie Han","doi":"10.1002/cssc.202401873","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating oxygen redox reactions with transition metal redox reactions offers a promising strategy to double or triple the energy density for large-capacity battery cathodes. In this study, we have introduced intrinsic oxygen vacancies (V<sub>O</sub>) into a P3 layered cathode to modulate the electronic structure of O atoms and enhance oxygen redox activity. Rietveld-refined X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy confirm the successful creation of V<sub>O</sub> in Na<sub>0.66</sub>Mn<sub>0.66</sub>Mg<sub>0.33</sub>O<sub>1.93</sub> (OV-NMM). Density functional theory (DFT) calculations reveal that V<sub>O</sub> in OV-NMM positively enhances the antibonding interaction between Mn and O, directing excess electrons from O holes toward adjacent Mn t<sub>2g</sub> and O 2p orbitals. This modification significantly improves the reversibility and accelerates Na<sup>+</sup> transport kinetics for O2<sup>-</sup>/O<sup>-</sup> redox reactions. Ex situ synchrotron-based XRD demonstrates that V<sub>O</sub> effectively eliminates the O3 phase, reduces Mg<sup>2+</sup> migration, and suppresses irreversible structural changes. XAS of Mn K-edge and O K-edge further illustrate the advantageous role of oxygen vacancies in facilitating oxygen redox reactions. These findings highlight the potential of defect engineering, particularly V<sub>O</sub>, to boost anionic redox activity for high-capacity energy storage applications.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401873"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Intrinsic Oxygen Vacancies in P3-Type Na<sub>0.66</sub>Mn<sub>0.66</sub>Mg<sub>0.33</sub>O<sub>1.93</sub> to Enhance Oxygen Redox Activity.\",\"authors\":\"Qin-Chao Wang, Jingkun Zhang, Zhiyong Zeng, Zhaoquan Peng, Huilin Zang, Xiaoge Li, Chao Wang, Jie Han\",\"doi\":\"10.1002/cssc.202401873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrating oxygen redox reactions with transition metal redox reactions offers a promising strategy to double or triple the energy density for large-capacity battery cathodes. In this study, we have introduced intrinsic oxygen vacancies (V<sub>O</sub>) into a P3 layered cathode to modulate the electronic structure of O atoms and enhance oxygen redox activity. Rietveld-refined X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy confirm the successful creation of V<sub>O</sub> in Na<sub>0.66</sub>Mn<sub>0.66</sub>Mg<sub>0.33</sub>O<sub>1.93</sub> (OV-NMM). Density functional theory (DFT) calculations reveal that V<sub>O</sub> in OV-NMM positively enhances the antibonding interaction between Mn and O, directing excess electrons from O holes toward adjacent Mn t<sub>2g</sub> and O 2p orbitals. This modification significantly improves the reversibility and accelerates Na<sup>+</sup> transport kinetics for O2<sup>-</sup>/O<sup>-</sup> redox reactions. Ex situ synchrotron-based XRD demonstrates that V<sub>O</sub> effectively eliminates the O3 phase, reduces Mg<sup>2+</sup> migration, and suppresses irreversible structural changes. XAS of Mn K-edge and O K-edge further illustrate the advantageous role of oxygen vacancies in facilitating oxygen redox reactions. These findings highlight the potential of defect engineering, particularly V<sub>O</sub>, to boost anionic redox activity for high-capacity energy storage applications.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401873\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401873\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401873","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将氧氧化还原反应与过渡金属氧化还原反应相结合,是将大容量电池阴极能量密度提高两倍或三倍的可行策略。在这项研究中,我们在 P3 层状阴极中引入了本征氧空位 (VO),以调节 O 原子的电子结构并提高氧氧化还原活性。里特维尔德细化 X 射线衍射 (XRD)、X 射线吸收光谱 (XAS) 和 X 射线光电子能谱证实了在 Na0.66Mn0.66Mg0.33O1.93 (OV-NMM) 中成功生成了 VO。密度泛函理论(DFT)计算显示,OV-NMM 中的 VO 积极增强了 Mn 和 O 之间的反键相互作用,将 O 空穴中的多余电子引向相邻的 Mn t2g 和 O 2p 轨道。这种修饰大大提高了 O2-/O- 氧化还原反应的可逆性,并加快了 Na+ 的传输动力学。基于同步加速器的原位 XRD 显示,VO 有效地消除了 O3 相,减少了 Mg2+ 迁移,并抑制了不可逆的结构变化。Mn K-edge 和 O K-edge 的 XAS 进一步说明了氧空位在促进氧氧化还原反应中的有利作用。这些发现凸显了缺陷工程(尤其是 VO)在提高阴离子氧化还原活性以实现高容量储能应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring Intrinsic Oxygen Vacancies in P3-Type Na0.66Mn0.66Mg0.33O1.93 to Enhance Oxygen Redox Activity.

Integrating oxygen redox reactions with transition metal redox reactions offers a promising strategy to double or triple the energy density for large-capacity battery cathodes. In this study, we have introduced intrinsic oxygen vacancies (VO) into a P3 layered cathode to modulate the electronic structure of O atoms and enhance oxygen redox activity. Rietveld-refined X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy confirm the successful creation of VO in Na0.66Mn0.66Mg0.33O1.93 (OV-NMM). Density functional theory (DFT) calculations reveal that VO in OV-NMM positively enhances the antibonding interaction between Mn and O, directing excess electrons from O holes toward adjacent Mn t2g and O 2p orbitals. This modification significantly improves the reversibility and accelerates Na+ transport kinetics for O2-/O- redox reactions. Ex situ synchrotron-based XRD demonstrates that VO effectively eliminates the O3 phase, reduces Mg2+ migration, and suppresses irreversible structural changes. XAS of Mn K-edge and O K-edge further illustrate the advantageous role of oxygen vacancies in facilitating oxygen redox reactions. These findings highlight the potential of defect engineering, particularly VO, to boost anionic redox activity for high-capacity energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Covalent Organic Frameworks with Regulated Water Adsorption Sites for Efficient Cooling of Electronics. A TEMPO-N3 Complex Enables the Electrochemical C-H Azidation of N-Heterocycles through the Cleavage of Alkoxyamines. PEI-templated ZIF-8 nanoparticles impart the NF membrane with high Mg2+/Li+ separation performance. Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1