Chantal Fürstner, Jens Ackerstaff, Heinrich Meier, Alexander Straub, Joachim Mittendorf, Jens Schamberger, Martina Schäfer, Kirsten Börngen, Hannah Jörißen, Dmitry Zubov, Katja Zimmermann, Adrian Tersteegen, Volker Geiss, Elke Hartmann, Barbara Albrecht-Küpper, Pedro D'Orléans-Juste, Catherine Lapointe, Laurence Vincent, Stefan Heitmeier, Hanna Tinel
{"title":"一种强效选择性糜蛋白酶抑制剂 Fulacimstat(BAY 1142524)的发现和临床前表征,它是一种安全溶解血栓的新型纤溶方法。","authors":"Chantal Fürstner, Jens Ackerstaff, Heinrich Meier, Alexander Straub, Joachim Mittendorf, Jens Schamberger, Martina Schäfer, Kirsten Börngen, Hannah Jörißen, Dmitry Zubov, Katja Zimmermann, Adrian Tersteegen, Volker Geiss, Elke Hartmann, Barbara Albrecht-Küpper, Pedro D'Orléans-Juste, Catherine Lapointe, Laurence Vincent, Stefan Heitmeier, Hanna Tinel","doi":"10.1021/acs.jmedchem.4c01819","DOIUrl":null,"url":null,"abstract":"<p><p>Chymase is a serine-protease produced by mast cells. In the past few decades, its role in fibrotic diseases triggered the search for orally available chymase inhibitors. Aiming at reducing adverse cardiac remodeling after myocardial infarction, our research efforts resulted in the discovery of fulacimstat (BAY 1142524). While clinical trials did not demonstrate efficacy in this indication, the recent discovery of a new unexpected biological role of chymase spurred a revival of interest in chymase inhibition: chymase was shown to inactivate plasmin within fibrin-rich clots. Chymase inhibitors are now considered as potential profibrinolytic drugs with low bleeding risk and therefore exceptional safety for the treatment of acute thrombosis settings such as stroke, pulmonary embolism, or venous thrombosis. This article describes the chemical optimization journey from a screening hit to the discovery of fulacimstat (BAY 1142524), a selective chymase inhibitor with a good safety profile, as well as its preclinical <i>in vitro</i> and <i>in vivo</i> characterization.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery and Preclinical Characterization of Fulacimstat (BAY 1142524), a Potent and Selective Chymase Inhibitor As a New Profibrinolytic Approach for Safe Thrombus Resolution.\",\"authors\":\"Chantal Fürstner, Jens Ackerstaff, Heinrich Meier, Alexander Straub, Joachim Mittendorf, Jens Schamberger, Martina Schäfer, Kirsten Börngen, Hannah Jörißen, Dmitry Zubov, Katja Zimmermann, Adrian Tersteegen, Volker Geiss, Elke Hartmann, Barbara Albrecht-Küpper, Pedro D'Orléans-Juste, Catherine Lapointe, Laurence Vincent, Stefan Heitmeier, Hanna Tinel\",\"doi\":\"10.1021/acs.jmedchem.4c01819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chymase is a serine-protease produced by mast cells. In the past few decades, its role in fibrotic diseases triggered the search for orally available chymase inhibitors. Aiming at reducing adverse cardiac remodeling after myocardial infarction, our research efforts resulted in the discovery of fulacimstat (BAY 1142524). While clinical trials did not demonstrate efficacy in this indication, the recent discovery of a new unexpected biological role of chymase spurred a revival of interest in chymase inhibition: chymase was shown to inactivate plasmin within fibrin-rich clots. Chymase inhibitors are now considered as potential profibrinolytic drugs with low bleeding risk and therefore exceptional safety for the treatment of acute thrombosis settings such as stroke, pulmonary embolism, or venous thrombosis. This article describes the chemical optimization journey from a screening hit to the discovery of fulacimstat (BAY 1142524), a selective chymase inhibitor with a good safety profile, as well as its preclinical <i>in vitro</i> and <i>in vivo</i> characterization.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01819\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01819","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery and Preclinical Characterization of Fulacimstat (BAY 1142524), a Potent and Selective Chymase Inhibitor As a New Profibrinolytic Approach for Safe Thrombus Resolution.
Chymase is a serine-protease produced by mast cells. In the past few decades, its role in fibrotic diseases triggered the search for orally available chymase inhibitors. Aiming at reducing adverse cardiac remodeling after myocardial infarction, our research efforts resulted in the discovery of fulacimstat (BAY 1142524). While clinical trials did not demonstrate efficacy in this indication, the recent discovery of a new unexpected biological role of chymase spurred a revival of interest in chymase inhibition: chymase was shown to inactivate plasmin within fibrin-rich clots. Chymase inhibitors are now considered as potential profibrinolytic drugs with low bleeding risk and therefore exceptional safety for the treatment of acute thrombosis settings such as stroke, pulmonary embolism, or venous thrombosis. This article describes the chemical optimization journey from a screening hit to the discovery of fulacimstat (BAY 1142524), a selective chymase inhibitor with a good safety profile, as well as its preclinical in vitro and in vivo characterization.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.