用于钾离子电池的普鲁士蓝模拟阴极的熵和电子结构调制与抑制相变。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-14 DOI:10.1021/acs.nanolett.4c04807
Shuangyan Qiao, Qianwen Zhou, Hua Kun Liu, Shi Xue Dou, Shaokun Chong
{"title":"用于钾离子电池的普鲁士蓝模拟阴极的熵和电子结构调制与抑制相变。","authors":"Shuangyan Qiao, Qianwen Zhou, Hua Kun Liu, Shi Xue Dou, Shaokun Chong","doi":"10.1021/acs.nanolett.4c04807","DOIUrl":null,"url":null,"abstract":"<p><p>Severe structural evolution and high content of [Fe(CN)<sub>6</sub>]<sup>4-</sup> defects drastically deteriorate K-ion storage performances of Prussian blue-based cathodes. Herein, a potassium manganese iron copper hexacyanoferrate (KFe<sub>2/3</sub>Mn<sub>1/6</sub>Cu<sub>1/6</sub>HCF), with suppressed anionic vacancies, eliminated band gap, and low K-ion diffusion barrier, is regarded as a cathode for potassium-ion batteries. The entropy stabilization effect and robust Cu-N bond induced by the inert Cu-ion with large electronegativity boost KFe<sub>2/3</sub>Mn<sub>1/6</sub>Cu<sub>1/6</sub>HCF to exhibit great phase state stability, thus inhibiting the structural transition of monoclinic ↔ cubic. Hence, KFe<sub>2/3</sub>Mn<sub>1/6</sub>Cu<sub>1/6</sub>HCF undergoes a zero-stress solid-solution reaction mechanism, where Fe and Mn serve as dual active sites for charge compensation. Consequently, KFe<sub>2/3</sub>Mn<sub>1/6</sub>Cu<sub>1/6</sub>HCF displays a high reversible capacity of 127.5 mAh·g<sup>-1</sup> with an energy density of 469.2 Wh·kg<sup>-1</sup> at 10 mA·g<sup>-1</sup> and superior cyclic stability with a high retention of 90.7% over 100 cycles. A high-energy-density K-ion full battery is assembled, contributing an ultralong lifetime over 1000 cycles with a low-capacity fading rate of 0.038% per cycle.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy and Electronic Structure Modulation of a Prussian Blue Analogue Cathode with Suppressed Phase Evolution for Potassium-Ion Batteries.\",\"authors\":\"Shuangyan Qiao, Qianwen Zhou, Hua Kun Liu, Shi Xue Dou, Shaokun Chong\",\"doi\":\"10.1021/acs.nanolett.4c04807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Severe structural evolution and high content of [Fe(CN)<sub>6</sub>]<sup>4-</sup> defects drastically deteriorate K-ion storage performances of Prussian blue-based cathodes. Herein, a potassium manganese iron copper hexacyanoferrate (KFe<sub>2/3</sub>Mn<sub>1/6</sub>Cu<sub>1/6</sub>HCF), with suppressed anionic vacancies, eliminated band gap, and low K-ion diffusion barrier, is regarded as a cathode for potassium-ion batteries. The entropy stabilization effect and robust Cu-N bond induced by the inert Cu-ion with large electronegativity boost KFe<sub>2/3</sub>Mn<sub>1/6</sub>Cu<sub>1/6</sub>HCF to exhibit great phase state stability, thus inhibiting the structural transition of monoclinic ↔ cubic. Hence, KFe<sub>2/3</sub>Mn<sub>1/6</sub>Cu<sub>1/6</sub>HCF undergoes a zero-stress solid-solution reaction mechanism, where Fe and Mn serve as dual active sites for charge compensation. Consequently, KFe<sub>2/3</sub>Mn<sub>1/6</sub>Cu<sub>1/6</sub>HCF displays a high reversible capacity of 127.5 mAh·g<sup>-1</sup> with an energy density of 469.2 Wh·kg<sup>-1</sup> at 10 mA·g<sup>-1</sup> and superior cyclic stability with a high retention of 90.7% over 100 cycles. A high-energy-density K-ion full battery is assembled, contributing an ultralong lifetime over 1000 cycles with a low-capacity fading rate of 0.038% per cycle.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04807\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04807","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

严重的结构演化和高含量的[Fe(CN)6]4-缺陷使普鲁士蓝基阴极的钾离子存储性能急剧下降。在这里,一种阴离子空位被抑制、带隙被消除、钾离子扩散阻力较低的六氰合铁酸锰铁铜钾(KFe2/3Mn1/6Cu1/6HCF)被视为钾离子电池的阴极。电负性大的惰性铜离子诱导的熵稳定效应和坚固的铜-N 键使 KFe2/3Mn1/6Cu1/6HCF 表现出极高的相态稳定性,从而抑制了单斜═立方的结构转变。因此,KFe2/3Mn1/6Cu1/6HCF 经历了零应力固溶反应机制,其中铁和锰是电荷补偿的双重活性位点。因此,KFe2/3Mn1/6Cu1/6HCF 的可逆容量高达 127.5 mAh-g-1,能量密度为 469.2 Wh-kg-1(10 mA-g-1),并且具有卓越的循环稳定性,在 100 次循环中保持率高达 90.7%。高能量密度 K 离子全电池组装完成后,可实现 1000 次循环的超长寿命,每次循环的低容量衰减率为 0.038%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy and Electronic Structure Modulation of a Prussian Blue Analogue Cathode with Suppressed Phase Evolution for Potassium-Ion Batteries.

Severe structural evolution and high content of [Fe(CN)6]4- defects drastically deteriorate K-ion storage performances of Prussian blue-based cathodes. Herein, a potassium manganese iron copper hexacyanoferrate (KFe2/3Mn1/6Cu1/6HCF), with suppressed anionic vacancies, eliminated band gap, and low K-ion diffusion barrier, is regarded as a cathode for potassium-ion batteries. The entropy stabilization effect and robust Cu-N bond induced by the inert Cu-ion with large electronegativity boost KFe2/3Mn1/6Cu1/6HCF to exhibit great phase state stability, thus inhibiting the structural transition of monoclinic ↔ cubic. Hence, KFe2/3Mn1/6Cu1/6HCF undergoes a zero-stress solid-solution reaction mechanism, where Fe and Mn serve as dual active sites for charge compensation. Consequently, KFe2/3Mn1/6Cu1/6HCF displays a high reversible capacity of 127.5 mAh·g-1 with an energy density of 469.2 Wh·kg-1 at 10 mA·g-1 and superior cyclic stability with a high retention of 90.7% over 100 cycles. A high-energy-density K-ion full battery is assembled, contributing an ultralong lifetime over 1000 cycles with a low-capacity fading rate of 0.038% per cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Perovskite-Type CaVO3 Nanocomposite as High-Performance Anode Material for Lithium-Ion Batteries Visualizing Single V-ATPase Rotation Using Janus Nanoparticles Sub-millielectronvolt Line Widths in Polarized Low-Temperature Photoluminescence of 2D PbS Nanoplatelets Emerging Advances in Lanthanide Photon Avalanche Nanophotonics Atomic-Scale Insights into Surface Instability in Halide Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1