增强血液动力学的反差TPMS拓扑结构可减少3D打印血液接触器中的血液凝固。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2024-11-15 DOI:10.1002/adhm.202403111
Lukas T Hirschwald, Franziska Hagemann, Maik Biermann, Paul Hanßen, Patrick Hoffmann, Tim Höhs, Florian Neuhaus, Maerthe Theresa Tillmann, Petar Peric, Maximilian Wattenberg, Maik Stille, Tamara Fechter, Alexander Theißen, Patrick Winnersbach, Kai P Barbian, Sebastian V Jansen, Ulrich Steinseifer, Bettina Wiegmann, Rolf Rossaint, Matthias Wessling, Christian Bleilevens, John Linkhorst
{"title":"增强血液动力学的反差TPMS拓扑结构可减少3D打印血液接触器中的血液凝固。","authors":"Lukas T Hirschwald, Franziska Hagemann, Maik Biermann, Paul Hanßen, Patrick Hoffmann, Tim Höhs, Florian Neuhaus, Maerthe Theresa Tillmann, Petar Peric, Maximilian Wattenberg, Maik Stille, Tamara Fechter, Alexander Theißen, Patrick Winnersbach, Kai P Barbian, Sebastian V Jansen, Ulrich Steinseifer, Bettina Wiegmann, Rolf Rossaint, Matthias Wessling, Christian Bleilevens, John Linkhorst","doi":"10.1002/adhm.202403111","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure-induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403111"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors.\",\"authors\":\"Lukas T Hirschwald, Franziska Hagemann, Maik Biermann, Paul Hanßen, Patrick Hoffmann, Tim Höhs, Florian Neuhaus, Maerthe Theresa Tillmann, Petar Peric, Maximilian Wattenberg, Maik Stille, Tamara Fechter, Alexander Theißen, Patrick Winnersbach, Kai P Barbian, Sebastian V Jansen, Ulrich Steinseifer, Bettina Wiegmann, Rolf Rossaint, Matthias Wessling, Christian Bleilevens, John Linkhorst\",\"doi\":\"10.1002/adhm.202403111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure-induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2403111\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202403111\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403111","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

人工器官,如体外膜氧合器、透析器和血滤器滤芯,一直面临着与滤芯内流量分布有关的挑战。这种不均匀的流量分布会导致血凝块的形成,并使设备功能表面的传质效率低下。在这项工作中,介绍了一种将三周期性最小表面(TPMS)精确集成到模块外壳中的综合方法,并质疑决定流量分布的内表面拓扑结构是否会影响血液凝固。本文比较了具有不同内部拓扑结构的三种模块类型:管状、等距和无等距 TPMS。首先,这项研究包括内部血液动力学的计算流体动力学(CFD)模拟,并通过实验性停留时间分布(RTD)进行验证。使用人体全血进行血液测试,随后通过计算机断层扫描对血凝块进行可视化,从而对结构引起的血液凝结进行量化。结果表明,与传统的管状几何结构相比,TPMS 拓扑结构,尤其是等距拓扑结构,可作为有效的流量分配器,显著减少和延缓血液凝结。对于这些新型 TPMS 模块,内表面可以通过化学或功能化方式激活,以作为选择性吸附位点或生物催化表面,或由可渗透材料制成,以促进质量转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors.

Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure-induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices. In Situ Sprayed Hydrogel Delivers Extracellular Vesicles Derived from Human Endometrial Organoids for Uterine Function Preservation and Fertility Restoration. Natural Extracellular Matrix Scaffold-Based Hydrogel Corneal Patch with Temperature and Light-Responsiveness for Penetrating Keratoplasty and Sutureless Stromal Defect Repair. Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation. Artificially Engineered Nanoprobes for Ultrasensitive Magnetic Resonance Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1