自动评估脑电图背景以预测新生儿脑病的神经发育。

IF 4.4 2区 医学 Q1 CLINICAL NEUROLOGY Annals of Clinical and Translational Neurology Pub Date : 2024-11-14 DOI:10.1002/acn3.52233
Micheline Lagacé, Saeed Montazeri, Daphne Kamino, Eva Mamak, Linh G Ly, Cecil D Hahn, Vann Chau, Sampsa Vanhatalo, Emily W Y Tam
{"title":"自动评估脑电图背景以预测新生儿脑病的神经发育。","authors":"Micheline Lagacé, Saeed Montazeri, Daphne Kamino, Eva Mamak, Linh G Ly, Cecil D Hahn, Vann Chau, Sampsa Vanhatalo, Emily W Y Tam","doi":"10.1002/acn3.52233","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.</p><p><strong>Methods: </strong>Trends of BSN, a deep learning-based measure translating EEG background to a continuous trend, were studied from a three-channel montage long-term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley-III) at 18 months. Outcome prediction used categories \"Severe impairment\" (Bayley-III composite score ≤70 or death) or \"Any impairment\" (score ≤85 or death).</p><p><strong>Results: </strong>\"Severe impairment\" was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). \"Any impairment\" was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.</p><p><strong>Interpretation: </strong>BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</p>","PeriodicalId":126,"journal":{"name":"Annals of Clinical and Translational Neurology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy.\",\"authors\":\"Micheline Lagacé, Saeed Montazeri, Daphne Kamino, Eva Mamak, Linh G Ly, Cecil D Hahn, Vann Chau, Sampsa Vanhatalo, Emily W Y Tam\",\"doi\":\"10.1002/acn3.52233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.</p><p><strong>Methods: </strong>Trends of BSN, a deep learning-based measure translating EEG background to a continuous trend, were studied from a three-channel montage long-term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley-III) at 18 months. Outcome prediction used categories \\\"Severe impairment\\\" (Bayley-III composite score ≤70 or death) or \\\"Any impairment\\\" (score ≤85 or death).</p><p><strong>Results: </strong>\\\"Severe impairment\\\" was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). \\\"Any impairment\\\" was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.</p><p><strong>Interpretation: </strong>BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</p>\",\"PeriodicalId\":126,\"journal\":{\"name\":\"Annals of Clinical and Translational Neurology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Clinical and Translational Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/acn3.52233\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical and Translational Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acn3.52233","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:评估新生儿脑状态(BSN)预测新生儿脑病神经发育结局的能力:评估新生儿脑状态(BSN)预测新生儿脑病神经发育结果的能力:BSN是一种基于深度学习的测量方法,可将脑电图背景转化为连续趋势,我们通过对92名新生儿脑病患儿的前瞻性队列进行三通道蒙太奇长期脑电图监测,研究了BSN的趋势,并通过贝利婴儿发育量表第三版(Bayley-III)评估了患儿18个月时的神经发育结果。结果预测采用 "严重损伤"(Bayley-III 综合评分≤70 分或死亡)或 "任何损伤"(评分≤85 分或死亡)类别:结果:"严重损伤 "对运动结果的预测效果最好(24 小时曲线下面积 (AUC) = 0.97),其次是认知(36 小时曲线下面积 = 0.90)、整体(24 小时曲线下面积 = 0.84)和语言(24 小时曲线下面积 = 0.82)。"任何损伤 "对运动结果的预测效果最佳(12 h AUC = 0.95),其次是认知(24 h AUC = 0.85)、整体(12 h AUC = 0.75)和语言(12 和 24 h AUC = 0.68)。预测结果的最佳 BSN 临界值随产后年龄而变化。BSN 分数低的婴儿在出生后 24 小时内对不良预后的预测阳性率达到 100%:BSN能很好地预测治疗性低温后新生儿脑病幸存者的不良神经发育结局,即使是在出生后24小时。该趋势可对脑电图背景进行全自动、客观、量化和可靠的解读。在最初的动态恢复阶段,高时间分辨率支持连续的床旁脑部评估和早期预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy.

Objective: Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.

Methods: Trends of BSN, a deep learning-based measure translating EEG background to a continuous trend, were studied from a three-channel montage long-term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley-III) at 18 months. Outcome prediction used categories "Severe impairment" (Bayley-III composite score ≤70 or death) or "Any impairment" (score ≤85 or death).

Results: "Severe impairment" was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). "Any impairment" was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.

Interpretation: BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Clinical and Translational Neurology
Annals of Clinical and Translational Neurology Medicine-Neurology (clinical)
CiteScore
9.10
自引率
1.90%
发文量
218
审稿时长
8 weeks
期刊介绍: Annals of Clinical and Translational Neurology is a peer-reviewed journal for rapid dissemination of high-quality research related to all areas of neurology. The journal publishes original research and scholarly reviews focused on the mechanisms and treatments of diseases of the nervous system; high-impact topics in neurologic education; and other topics of interest to the clinical neuroscience community.
期刊最新文献
Issue Information Comprehensive multicentre retrospective analysis for predicting isocitrate dehydrogenase-mutant lower-grade gliomas. Determinants of long-term paramagnetic rim lesion evolution in people with multiple sclerosis. Dopaminergic therapy disrupts decision-making in impulsive-compulsive Parkinsonian patients. Incremental clinical value of intraplaque neovascularization in predicting recurrent ischemic stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1