Micheline Lagacé, Saeed Montazeri, Daphne Kamino, Eva Mamak, Linh G. Ly, Cecil D. Hahn, Vann Chau, Sampsa Vanhatalo, Emily W. Y. Tam
{"title":"自动评估脑电图背景以预测新生儿脑病的神经发育。","authors":"Micheline Lagacé, Saeed Montazeri, Daphne Kamino, Eva Mamak, Linh G. Ly, Cecil D. Hahn, Vann Chau, Sampsa Vanhatalo, Emily W. Y. Tam","doi":"10.1002/acn3.52233","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Trends of BSN, a deep learning-based measure translating EEG background to a continuous trend, were studied from a three-channel montage long-term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley-III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley-III composite score ≤70 or death) or “Any impairment” (score ≤85 or death).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>“Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.</p>\n </section>\n \n <section>\n \n <h3> Interpretation</h3>\n \n <p>BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</p>\n </section>\n </div>","PeriodicalId":126,"journal":{"name":"Annals of Clinical and Translational Neurology","volume":"11 12","pages":"3267-3279"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acn3.52233","citationCount":"0","resultStr":"{\"title\":\"Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy\",\"authors\":\"Micheline Lagacé, Saeed Montazeri, Daphne Kamino, Eva Mamak, Linh G. Ly, Cecil D. Hahn, Vann Chau, Sampsa Vanhatalo, Emily W. Y. Tam\",\"doi\":\"10.1002/acn3.52233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Trends of BSN, a deep learning-based measure translating EEG background to a continuous trend, were studied from a three-channel montage long-term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley-III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley-III composite score ≤70 or death) or “Any impairment” (score ≤85 or death).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>“Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Interpretation</h3>\\n \\n <p>BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</p>\\n </section>\\n </div>\",\"PeriodicalId\":126,\"journal\":{\"name\":\"Annals of Clinical and Translational Neurology\",\"volume\":\"11 12\",\"pages\":\"3267-3279\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acn3.52233\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Clinical and Translational Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acn3.52233\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical and Translational Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acn3.52233","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy
Objective
Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.
Methods
Trends of BSN, a deep learning-based measure translating EEG background to a continuous trend, were studied from a three-channel montage long-term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley-III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley-III composite score ≤70 or death) or “Any impairment” (score ≤85 or death).
Results
“Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.
Interpretation
BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.
期刊介绍:
Annals of Clinical and Translational Neurology is a peer-reviewed journal for rapid dissemination of high-quality research related to all areas of neurology. The journal publishes original research and scholarly reviews focused on the mechanisms and treatments of diseases of the nervous system; high-impact topics in neurologic education; and other topics of interest to the clinical neuroscience community.