Virginia Fuochi, Salvatore Furnari, Giuseppe Floresta, Vincenzo Patamia, Chiara Zagni, Filippo Drago, Antonio Rescifina, Pio Maria Furneri
{"title":"硫酸肝素和依诺肝素钠对 SARS-CoV-2 的抗病毒疗效。","authors":"Virginia Fuochi, Salvatore Furnari, Giuseppe Floresta, Vincenzo Patamia, Chiara Zagni, Filippo Drago, Antonio Rescifina, Pio Maria Furneri","doi":"10.1002/ardp.202400545","DOIUrl":null,"url":null,"abstract":"<p><p>As the world transitions from the acute phase of the COVID-19 pandemic caused by SARS-CoV-2, the scientific community continues to explore various therapeutic avenues to control its spread and mitigate its ongoing effects. Among the promising candidates are heparan sulfate (HS) and enoxaparin (EX), which have emerged as potential virus inhibitors. HS, a type of glycosaminoglycan, plays a prominent role in the attachment of the virus to host cells. At the same time, EX, a low-molecular-weight heparin, is being investigated for its ability to disrupt the interaction between the spike protein of SARS-CoV-2 and the ACE2 receptor in human cells. Understanding the mechanisms through which these substances operate could lay the foundation for new strategies in the ongoing management of COVID-19. This study aimed to examine the details of SARS-CoV-2's entry mechanisms and the role of HS in this process. Furthermore, it examines EX's mechanism of action, highlighting how it potentially inhibits SARS-CoV-2. The interactions between HS and the virus, alongside in-vitro and in-silico inhibition studies with HS and EX, are critically analyzed to assess their antiviral efficacy. Additionally, the antiviral activity of sulfated polysaccharides and the potential therapeutic applications of these findings are discussed.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":" ","pages":"e2400545"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiviral efficacy of heparan sulfate and enoxaparin sodium against SARS-CoV-2.\",\"authors\":\"Virginia Fuochi, Salvatore Furnari, Giuseppe Floresta, Vincenzo Patamia, Chiara Zagni, Filippo Drago, Antonio Rescifina, Pio Maria Furneri\",\"doi\":\"10.1002/ardp.202400545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the world transitions from the acute phase of the COVID-19 pandemic caused by SARS-CoV-2, the scientific community continues to explore various therapeutic avenues to control its spread and mitigate its ongoing effects. Among the promising candidates are heparan sulfate (HS) and enoxaparin (EX), which have emerged as potential virus inhibitors. HS, a type of glycosaminoglycan, plays a prominent role in the attachment of the virus to host cells. At the same time, EX, a low-molecular-weight heparin, is being investigated for its ability to disrupt the interaction between the spike protein of SARS-CoV-2 and the ACE2 receptor in human cells. Understanding the mechanisms through which these substances operate could lay the foundation for new strategies in the ongoing management of COVID-19. This study aimed to examine the details of SARS-CoV-2's entry mechanisms and the role of HS in this process. Furthermore, it examines EX's mechanism of action, highlighting how it potentially inhibits SARS-CoV-2. The interactions between HS and the virus, alongside in-vitro and in-silico inhibition studies with HS and EX, are critically analyzed to assess their antiviral efficacy. Additionally, the antiviral activity of sulfated polysaccharides and the potential therapeutic applications of these findings are discussed.</p>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\" \",\"pages\":\"e2400545\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ardp.202400545\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ardp.202400545","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Antiviral efficacy of heparan sulfate and enoxaparin sodium against SARS-CoV-2.
As the world transitions from the acute phase of the COVID-19 pandemic caused by SARS-CoV-2, the scientific community continues to explore various therapeutic avenues to control its spread and mitigate its ongoing effects. Among the promising candidates are heparan sulfate (HS) and enoxaparin (EX), which have emerged as potential virus inhibitors. HS, a type of glycosaminoglycan, plays a prominent role in the attachment of the virus to host cells. At the same time, EX, a low-molecular-weight heparin, is being investigated for its ability to disrupt the interaction between the spike protein of SARS-CoV-2 and the ACE2 receptor in human cells. Understanding the mechanisms through which these substances operate could lay the foundation for new strategies in the ongoing management of COVID-19. This study aimed to examine the details of SARS-CoV-2's entry mechanisms and the role of HS in this process. Furthermore, it examines EX's mechanism of action, highlighting how it potentially inhibits SARS-CoV-2. The interactions between HS and the virus, alongside in-vitro and in-silico inhibition studies with HS and EX, are critically analyzed to assess their antiviral efficacy. Additionally, the antiviral activity of sulfated polysaccharides and the potential therapeutic applications of these findings are discussed.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.