Svitlana Serga, Pavlo A. Kovalenko, Oleksandr M. Maistrenko, Gwenaëlle Deconninck, Oleksandra Shevchenko, Nataliia Iakovenko, Yurii Protsenko, Andrij Susulovsky, Łukasz Kaczmarek, Mariia Pavlovska, Peter Convey, Iryna Kozeretska
{"title":"南极陆生无脊椎动物中的沃尔巴克氏菌:不存在还是未被发现?","authors":"Svitlana Serga, Pavlo A. Kovalenko, Oleksandr M. Maistrenko, Gwenaëlle Deconninck, Oleksandra Shevchenko, Nataliia Iakovenko, Yurii Protsenko, Andrij Susulovsky, Łukasz Kaczmarek, Mariia Pavlovska, Peter Convey, Iryna Kozeretska","doi":"10.1111/1758-2229.70040","DOIUrl":null,"url":null,"abstract":"<p>Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is <i>Wolbachia pipientis</i>, which is associated with a wide variety of invertebrates. <i>Wolbachia</i> is known for manipulating host reproduction and having obligate or facultative mutualistic relationships with various hosts. However, there is a lack of clear understanding of the prevalence of <i>Wolbachia</i> in terrestrial invertebrates in Antarctica. We present the outcomes of a literature search for information on the occurrence of <i>Wolbachia</i> in each of the major taxonomic groups of terrestrial invertebrates (Acari, Collembola, Diptera, Rotifera, Nematoda, Tardigrada). We also performed profiling of prokaryotes based on three marker genes and Kraken2 in available whole genome sequence data obtained from Antarctic invertebrate samples. We found no reports or molecular evidence of <i>Wolbachia</i> in these invertebrate groups in Antarctica. We discuss possible reasons underlying this apparent absence and suggest opportunities for more targeted future research to confirm bacteria's presence or absence.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558105/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered?\",\"authors\":\"Svitlana Serga, Pavlo A. Kovalenko, Oleksandr M. Maistrenko, Gwenaëlle Deconninck, Oleksandra Shevchenko, Nataliia Iakovenko, Yurii Protsenko, Andrij Susulovsky, Łukasz Kaczmarek, Mariia Pavlovska, Peter Convey, Iryna Kozeretska\",\"doi\":\"10.1111/1758-2229.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is <i>Wolbachia pipientis</i>, which is associated with a wide variety of invertebrates. <i>Wolbachia</i> is known for manipulating host reproduction and having obligate or facultative mutualistic relationships with various hosts. However, there is a lack of clear understanding of the prevalence of <i>Wolbachia</i> in terrestrial invertebrates in Antarctica. We present the outcomes of a literature search for information on the occurrence of <i>Wolbachia</i> in each of the major taxonomic groups of terrestrial invertebrates (Acari, Collembola, Diptera, Rotifera, Nematoda, Tardigrada). We also performed profiling of prokaryotes based on three marker genes and Kraken2 in available whole genome sequence data obtained from Antarctic invertebrate samples. We found no reports or molecular evidence of <i>Wolbachia</i> in these invertebrate groups in Antarctica. We discuss possible reasons underlying this apparent absence and suggest opportunities for more targeted future research to confirm bacteria's presence or absence.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558105/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70040\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered?
Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is Wolbachia pipientis, which is associated with a wide variety of invertebrates. Wolbachia is known for manipulating host reproduction and having obligate or facultative mutualistic relationships with various hosts. However, there is a lack of clear understanding of the prevalence of Wolbachia in terrestrial invertebrates in Antarctica. We present the outcomes of a literature search for information on the occurrence of Wolbachia in each of the major taxonomic groups of terrestrial invertebrates (Acari, Collembola, Diptera, Rotifera, Nematoda, Tardigrada). We also performed profiling of prokaryotes based on three marker genes and Kraken2 in available whole genome sequence data obtained from Antarctic invertebrate samples. We found no reports or molecular evidence of Wolbachia in these invertebrate groups in Antarctica. We discuss possible reasons underlying this apparent absence and suggest opportunities for more targeted future research to confirm bacteria's presence or absence.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.