增强催化活性位点的策略:引入一维材料 InSeI 用于电化学 CO2 还原成甲酸盐。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-11-12 DOI:10.1002/smtd.202401157
Jiho Jeon, Hyeon-Seok Bang, Young-Jin Ko, Jinsu Kang, Xiaojie Zhang, Cheoulwoo Oh, Hyunchul Kim, Kyung Hwan Choi, Chaeheon Woo, Xue Dong, Woong Hee Lee, Hak Ki Yu, Jae-Young Choi, Hyung-Suk Oh
{"title":"增强催化活性位点的策略:引入一维材料 InSeI 用于电化学 CO2 还原成甲酸盐。","authors":"Jiho Jeon, Hyeon-Seok Bang, Young-Jin Ko, Jinsu Kang, Xiaojie Zhang, Cheoulwoo Oh, Hyunchul Kim, Kyung Hwan Choi, Chaeheon Woo, Xue Dong, Woong Hee Lee, Hak Ki Yu, Jae-Young Choi, Hyung-Suk Oh","doi":"10.1002/smtd.202401157","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of oxygen vacancies (V<sub>o</sub>) in electrocatalysts plays a significant role in improving the selectivity and activity of CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). In this study, 1D material with large surface area is utilized to enable uniform V<sub>o</sub> formation on the catalyst. 1D structured indium selenoiodide (InSeI) is synthesized and used as an electrocatalyst for the conversion of CO<sub>2</sub> to formate. The electrochemical treatment of InSeI leads to the leaching of Se and I from the catalyst surface and the formation of V<sub>o</sub>. The resulting V<sub>o</sub> promotes the activity of the CO<sub>2</sub>RR, which increases the local pH of the catalyst surface and chemically maintains the oxidized metal sites on the catalyst. Owing to these characteristics, activated In wire exhibited remarkable CO<sub>2</sub>RR activity, thereby surpassing 93% FE<sub>formate</sub> at 500 mA cm<sup>-2</sup>, with a maximum of 97.3% FE<sub>formate</sub> at 100 mA cm<sup>-2</sup>. Moreover, the catalytic activity remained consistent for over 50 h at 100 mA cm<sup>-2</sup> (FE<sub>formate</sub> >88%). Thus, the findings imply that using 1D materials can facilitate the formation of oxygen vacancies on the catalyst surface and improve the selectivity and durability of CO<sub>2</sub>RR. This indicates the potential for further research on 1D materials as electrocatalysts.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401157"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategy for Enhancing Catalytic Active Site: Introduction of 1D material InSeI for Electrochemical CO<sub>2</sub> Reduction to Formate.\",\"authors\":\"Jiho Jeon, Hyeon-Seok Bang, Young-Jin Ko, Jinsu Kang, Xiaojie Zhang, Cheoulwoo Oh, Hyunchul Kim, Kyung Hwan Choi, Chaeheon Woo, Xue Dong, Woong Hee Lee, Hak Ki Yu, Jae-Young Choi, Hyung-Suk Oh\",\"doi\":\"10.1002/smtd.202401157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The presence of oxygen vacancies (V<sub>o</sub>) in electrocatalysts plays a significant role in improving the selectivity and activity of CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). In this study, 1D material with large surface area is utilized to enable uniform V<sub>o</sub> formation on the catalyst. 1D structured indium selenoiodide (InSeI) is synthesized and used as an electrocatalyst for the conversion of CO<sub>2</sub> to formate. The electrochemical treatment of InSeI leads to the leaching of Se and I from the catalyst surface and the formation of V<sub>o</sub>. The resulting V<sub>o</sub> promotes the activity of the CO<sub>2</sub>RR, which increases the local pH of the catalyst surface and chemically maintains the oxidized metal sites on the catalyst. Owing to these characteristics, activated In wire exhibited remarkable CO<sub>2</sub>RR activity, thereby surpassing 93% FE<sub>formate</sub> at 500 mA cm<sup>-2</sup>, with a maximum of 97.3% FE<sub>formate</sub> at 100 mA cm<sup>-2</sup>. Moreover, the catalytic activity remained consistent for over 50 h at 100 mA cm<sup>-2</sup> (FE<sub>formate</sub> >88%). Thus, the findings imply that using 1D materials can facilitate the formation of oxygen vacancies on the catalyst surface and improve the selectivity and durability of CO<sub>2</sub>RR. This indicates the potential for further research on 1D materials as electrocatalysts.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401157\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401157\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401157","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电催化剂中氧空位(Vo)的存在对提高二氧化碳还原反应(CO2RR)的选择性和活性具有重要作用。在本研究中,利用了具有大表面积的一维材料,使催化剂上能够形成均匀的氧空位。我们合成了一维结构的硒碘化铟(InSeI),并将其用作将 CO2 转化为甲酸盐的电催化剂。InSeI 的电化学处理导致 Se 和 I 从催化剂表面浸出并形成 Vo。生成的 Vo 可促进 CO2RR 的活性,从而提高催化剂表面的局部 pH 值,并通过化学反应保持催化剂上的氧化金属位点。由于这些特性,活化铟丝表现出显著的 CO2RR 活性,在 500 mA cm-2 时,甲酸钙含量超过 93%,在 100 mA cm-2 时甲酸钙含量最高达 97.3%。此外,在 100 mA cm-2 的条件下,催化活性保持稳定超过 50 小时(甲酸乙酯大于 88%)。因此,研究结果表明,使用一维材料可以促进催化剂表面氧空位的形成,提高 CO2RR 的选择性和耐久性。这表明一维材料作为电催化剂具有进一步研究的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategy for Enhancing Catalytic Active Site: Introduction of 1D material InSeI for Electrochemical CO2 Reduction to Formate.

The presence of oxygen vacancies (Vo) in electrocatalysts plays a significant role in improving the selectivity and activity of CO2 reduction reaction (CO2RR). In this study, 1D material with large surface area is utilized to enable uniform Vo formation on the catalyst. 1D structured indium selenoiodide (InSeI) is synthesized and used as an electrocatalyst for the conversion of CO2 to formate. The electrochemical treatment of InSeI leads to the leaching of Se and I from the catalyst surface and the formation of Vo. The resulting Vo promotes the activity of the CO2RR, which increases the local pH of the catalyst surface and chemically maintains the oxidized metal sites on the catalyst. Owing to these characteristics, activated In wire exhibited remarkable CO2RR activity, thereby surpassing 93% FEformate at 500 mA cm-2, with a maximum of 97.3% FEformate at 100 mA cm-2. Moreover, the catalytic activity remained consistent for over 50 h at 100 mA cm-2 (FEformate >88%). Thus, the findings imply that using 1D materials can facilitate the formation of oxygen vacancies on the catalyst surface and improve the selectivity and durability of CO2RR. This indicates the potential for further research on 1D materials as electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1