{"title":"Pd 催化的未活化全氟烯与氢苯并恶唑之间的位点选择性脱氟醚化反应。","authors":"Yaping Wang, Luyao Wang, Yibo Qin, Heng-Ying Xiong, Guangwu Zhang","doi":"10.1002/chem.202403914","DOIUrl":null,"url":null,"abstract":"<p><p>Polyfluoroaryl ethers represent an important framework of biologically active molecules and materials. Owing to the strong bond dissociation energy of C-F bond, selectivity and other issues, transition metal-catalyzed synthesis of polyfluoroaryl ethers from perfluoroarenes via the activation of C-F bond is challenging and underdeveloped, as compared to the well-documented C-O bond formation starting from aryl iodides, aryl bromides or aryl chlorides. Herein, an unprecedented Pd-catalyzed defluorinative etherification for the synthesis of polyfluoroaryl ether skeletons using hydrobenzoxazoles as phenol surrogate, has been reported. The substrate scope for this protocol is broad, with respect to hydrobenzoxazoles and perfluoroarenes, under mild reaction conditions. More importantly, challenging alkenyl and alkynyl substituted polyfluoroarenes could be successfully used as the coupling component for Pd-catalyzed etherification reaction. Density functional theory (DFT) calculations were employed to investigate the reaction mechanism, which suggested that oxidative addition between polyfluorobenzene and Pd(0) constituted the ratedetermining step.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403914"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pd-Catalyzed Site-Selective Defluorinative Etherification between Unactivated Perfluoroarenes and Hydrobenzoxazoles.\",\"authors\":\"Yaping Wang, Luyao Wang, Yibo Qin, Heng-Ying Xiong, Guangwu Zhang\",\"doi\":\"10.1002/chem.202403914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyfluoroaryl ethers represent an important framework of biologically active molecules and materials. Owing to the strong bond dissociation energy of C-F bond, selectivity and other issues, transition metal-catalyzed synthesis of polyfluoroaryl ethers from perfluoroarenes via the activation of C-F bond is challenging and underdeveloped, as compared to the well-documented C-O bond formation starting from aryl iodides, aryl bromides or aryl chlorides. Herein, an unprecedented Pd-catalyzed defluorinative etherification for the synthesis of polyfluoroaryl ether skeletons using hydrobenzoxazoles as phenol surrogate, has been reported. The substrate scope for this protocol is broad, with respect to hydrobenzoxazoles and perfluoroarenes, under mild reaction conditions. More importantly, challenging alkenyl and alkynyl substituted polyfluoroarenes could be successfully used as the coupling component for Pd-catalyzed etherification reaction. Density functional theory (DFT) calculations were employed to investigate the reaction mechanism, which suggested that oxidative addition between polyfluorobenzene and Pd(0) constituted the ratedetermining step.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\" \",\"pages\":\"e202403914\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202403914\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403914","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pd-Catalyzed Site-Selective Defluorinative Etherification between Unactivated Perfluoroarenes and Hydrobenzoxazoles.
Polyfluoroaryl ethers represent an important framework of biologically active molecules and materials. Owing to the strong bond dissociation energy of C-F bond, selectivity and other issues, transition metal-catalyzed synthesis of polyfluoroaryl ethers from perfluoroarenes via the activation of C-F bond is challenging and underdeveloped, as compared to the well-documented C-O bond formation starting from aryl iodides, aryl bromides or aryl chlorides. Herein, an unprecedented Pd-catalyzed defluorinative etherification for the synthesis of polyfluoroaryl ether skeletons using hydrobenzoxazoles as phenol surrogate, has been reported. The substrate scope for this protocol is broad, with respect to hydrobenzoxazoles and perfluoroarenes, under mild reaction conditions. More importantly, challenging alkenyl and alkynyl substituted polyfluoroarenes could be successfully used as the coupling component for Pd-catalyzed etherification reaction. Density functional theory (DFT) calculations were employed to investigate the reaction mechanism, which suggested that oxidative addition between polyfluorobenzene and Pd(0) constituted the ratedetermining step.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.