用于电化学能量转换应用的 0D/2D 金属@锗烷纳米结构的多功能有机金属合成。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-11-12 DOI:10.1002/smtd.202400854
Yiming Lei, Xavier Sala, Jordi García-Antón, Jose Muñoz
{"title":"用于电化学能量转换应用的 0D/2D 金属@锗烷纳米结构的多功能有机金属合成。","authors":"Yiming Lei, Xavier Sala, Jordi García-Antón, Jose Muñoz","doi":"10.1002/smtd.202400854","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen-terminated 2D-Germanane (2D-GeH), a germanium-based 2D material akin to graphene, is receiving enormous attention owing to its predicted optoelectronic characteristics. However, experimental research of 2D-GeH is still in an early stage, and therefore its real implementation for task-specific applications will depend on the correct development of suitable chemical functionalization methods. Herein, a general and straightforward organometallic (OM) approach is provided for the robust functionalization of 2D-GeH with different 0D noble metal nanoparticles (M-NPs), resulting in 0D/2D M@GeH nanoarchitectonics. As a proof-of-principle, 0D/2D Pt@GeH and Au@GeH nanoarchitectonics have been successfully synthesized, characterized, and explored as unconventional electrocatalysts for boosting energy conversion reactions. While the hydrogen evolution reaction activity was evaluated for Pt@GeH, the oxygen reduction reaction was interrogated for Au@GeH. Interestingly, the implanted catalytic features of M-NPs yielded to 0D/2D M@GeH nanoarchitectonics with enhanced energy conversion activity comparing to pristine 2D-GeH counterpart. This work proves the suitability of 2D-GeH as unconventional substrates to stabilize nobleM-NPs, and the versatility of the OM approach for the custom design of a new family of 0D/2D M@GeH nanoarchitectonics to expand the implementation of monoelemental 2D materials as promising electrocatalysts in energy conversion field and beyond.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400854"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Versatile Organometallic Synthesis of 0D/2D Metal@Germanane Nanoarchitectonics for Electrochemical Energy Conversion Applications.\",\"authors\":\"Yiming Lei, Xavier Sala, Jordi García-Antón, Jose Muñoz\",\"doi\":\"10.1002/smtd.202400854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogen-terminated 2D-Germanane (2D-GeH), a germanium-based 2D material akin to graphene, is receiving enormous attention owing to its predicted optoelectronic characteristics. However, experimental research of 2D-GeH is still in an early stage, and therefore its real implementation for task-specific applications will depend on the correct development of suitable chemical functionalization methods. Herein, a general and straightforward organometallic (OM) approach is provided for the robust functionalization of 2D-GeH with different 0D noble metal nanoparticles (M-NPs), resulting in 0D/2D M@GeH nanoarchitectonics. As a proof-of-principle, 0D/2D Pt@GeH and Au@GeH nanoarchitectonics have been successfully synthesized, characterized, and explored as unconventional electrocatalysts for boosting energy conversion reactions. While the hydrogen evolution reaction activity was evaluated for Pt@GeH, the oxygen reduction reaction was interrogated for Au@GeH. Interestingly, the implanted catalytic features of M-NPs yielded to 0D/2D M@GeH nanoarchitectonics with enhanced energy conversion activity comparing to pristine 2D-GeH counterpart. This work proves the suitability of 2D-GeH as unconventional substrates to stabilize nobleM-NPs, and the versatility of the OM approach for the custom design of a new family of 0D/2D M@GeH nanoarchitectonics to expand the implementation of monoelemental 2D materials as promising electrocatalysts in energy conversion field and beyond.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2400854\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202400854\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400854","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢端二维锗烷(2D-GeH)是一种与石墨烯类似的锗基二维材料,由于其预期的光电特性而备受关注。然而,2D-GeH 的实验研究仍处于早期阶段,因此其在特定任务中的真正应用将取决于合适的化学功能化方法的正确开发。本文提供了一种通用而简单的有机金属(OM)方法,用于用不同的 0D 贵金属纳米颗粒(M-NPs)对 2D-GeH 进行稳健的官能化,从而形成 0D/2D M@GeH 纳米结构。作为原理验证,0D/2D Pt@GeH 和 Au@GeH 纳米结构已被成功合成、表征,并作为促进能量转换反应的非常规电催化剂进行了探索。在评估 Pt@GeH 的氢气进化反应活性的同时,还考察了 Au@GeH 的氧气还原反应。有趣的是,与原始的 2D-GeH 相比,M-NPs 的植入催化特性产生了 0D/2D M@GeH 纳米结构,从而提高了能量转换活性。这项工作证明了二维-GeH 作为稳定惰性 M-NPs 的非常规基底的适用性,以及 OM 方法在定制设计 0D/2D M@GeH 纳米架构新系列方面的多功能性,从而拓展了单元素二维材料作为有前途的电催化剂在能源转换领域及其他领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Versatile Organometallic Synthesis of 0D/2D Metal@Germanane Nanoarchitectonics for Electrochemical Energy Conversion Applications.

Hydrogen-terminated 2D-Germanane (2D-GeH), a germanium-based 2D material akin to graphene, is receiving enormous attention owing to its predicted optoelectronic characteristics. However, experimental research of 2D-GeH is still in an early stage, and therefore its real implementation for task-specific applications will depend on the correct development of suitable chemical functionalization methods. Herein, a general and straightforward organometallic (OM) approach is provided for the robust functionalization of 2D-GeH with different 0D noble metal nanoparticles (M-NPs), resulting in 0D/2D M@GeH nanoarchitectonics. As a proof-of-principle, 0D/2D Pt@GeH and Au@GeH nanoarchitectonics have been successfully synthesized, characterized, and explored as unconventional electrocatalysts for boosting energy conversion reactions. While the hydrogen evolution reaction activity was evaluated for Pt@GeH, the oxygen reduction reaction was interrogated for Au@GeH. Interestingly, the implanted catalytic features of M-NPs yielded to 0D/2D M@GeH nanoarchitectonics with enhanced energy conversion activity comparing to pristine 2D-GeH counterpart. This work proves the suitability of 2D-GeH as unconventional substrates to stabilize nobleM-NPs, and the versatility of the OM approach for the custom design of a new family of 0D/2D M@GeH nanoarchitectonics to expand the implementation of monoelemental 2D materials as promising electrocatalysts in energy conversion field and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1